联合收割机稻麦收获边界激光在线识别系统设计与试验

针对联合收割机收获边界在线识别问题,利用激光无损探测技术,开发了联合收割机收获边界在线识别系统.首先介绍了系统组成、激光传感器选型及工作原理,将传感器输出数据极坐标转换为直角坐标,建立稻麦轮廓特征数学模型.由于收获过程会产生大量的灰尘,会对激光探测距离及信号反射产生影响.通过与作物特征阈值比较,对受灰尘影响的错误数据进行有效识别与剔除.采用移动平均数字滤波算法,消除系统测量噪声.通过信号阶跃变化模式识别算法,实现了收获边界的在线检测,准确推算出联合收割机作业割幅,并进行了田间试验研究.试验结果表明,该系统可实现在线监测,收获边界测量误差不大于12 cm,可为联合收割机智能监控系统的实际应用提供...

Full description

Saved in:
Bibliographic Details
Published in农业工程学报 Vol. 33; no. z1; pp. 30 - 35
Main Author 伟利国 张小超 汪凤珠 车宇 孙小文 王紫玮
Format Journal Article
LanguageChinese
Published 土壤植物机器系统技术国家重点实验室,北京 100083%中国农业机械化科学研究院,北京,100083%北京理工大学自动化学院,北京,100081 2017
中国农业机械化科学研究院,北京 100083
Subjects
Online AccessGet full text
ISSN1002-6819
DOI10.11975/j.issn.1002-6819.2017.z1.005

Cover

More Information
Summary:针对联合收割机收获边界在线识别问题,利用激光无损探测技术,开发了联合收割机收获边界在线识别系统.首先介绍了系统组成、激光传感器选型及工作原理,将传感器输出数据极坐标转换为直角坐标,建立稻麦轮廓特征数学模型.由于收获过程会产生大量的灰尘,会对激光探测距离及信号反射产生影响.通过与作物特征阈值比较,对受灰尘影响的错误数据进行有效识别与剔除.采用移动平均数字滤波算法,消除系统测量噪声.通过信号阶跃变化模式识别算法,实现了收获边界的在线检测,准确推算出联合收割机作业割幅,并进行了田间试验研究.试验结果表明,该系统可实现在线监测,收获边界测量误差不大于12 cm,可为联合收割机智能监控系统的实际应用提供参考.
Bibliography:11-2047/S
At present, the combine harvester is developing towards the direction of large scale and high speed. It is more and more difficult to recognize the harvest boundary only by people's eyesight, which is to ensure the consistency of cutting when combine harvester operates. When the harvester works in the field, it usually works in full cutting conditions, which requires the driver has high driving skills, and the whole tracking operations keep for a long time; the labour intensity of the driver and the dust of field work make it difficult to rely on the naked eye to obtain accurate boundary. Combine harvester yield monitoring system is according to the need of harvest cutting and actual speed for real-time calculation of harvest area at home and abroad, and combine harvester yield measuring system mainly relies on the operator's input of harvesting information manually, but the actual harvest is difficult to ensure the full harvest. In the detection of combine harvester's feeding quantity
ISSN:1002-6819
DOI:10.11975/j.issn.1002-6819.2017.z1.005