Auto-deconvolution and molecular networking of gas chromatography–mass spectrometry data

We engineered a machine learning approach, MSHub, to enable auto-deconvolution of gas chromatography–mass spectrometry (GC–MS) data. We then designed workflows to enable the community to store, process, share, annotate, compare and perform molecular networking of GC–MS data within the Global Natural...

Full description

Saved in:
Bibliographic Details
Published inNature biotechnology Vol. 39; no. 2; pp. 169 - 173
Main Authors Aksenov, Alexander A., Laponogov, Ivan, Zhang, Zheng, Doran, Sophie L. F., Belluomo, Ilaria, Veselkov, Dennis, Bittremieux, Wout, Nothias, Louis Felix, Nothias-Esposito, Mélissa, Maloney, Katherine N., Misra, Biswapriya B., Melnik, Alexey V., Smirnov, Aleksandr, Du, Xiuxia, Jones, Kenneth L., Dorrestein, Kathleen, Panitchpakdi, Morgan, Ernst, Madeleine, van der Hooft, Justin J. J., Gonzalez, Mabel, Carazzone, Chiara, Amézquita, Adolfo, Callewaert, Chris, Morton, James T., Quinn, Robert A., Bouslimani, Amina, Orio, Andrea Albarracín, Petras, Daniel, Smania, Andrea M., Couvillion, Sneha P., Burnet, Meagan C., Nicora, Carrie D., Zink, Erika, Metz, Thomas O., Artaev, Viatcheslav, Humston-Fulmer, Elizabeth, Gregor, Rachel, Meijler, Michael M., Mizrahi, Itzhak, Eyal, Stav, Anderson, Brooke, Dutton, Rachel, Lugan, Raphaël, Boulch, Pauline Le, Guitton, Yann, Prevost, Stephanie, Poirier, Audrey, Dervilly, Gaud, Le Bizec, Bruno, Fait, Aaron, Persi, Noga Sikron, Song, Chao, Gashu, Kelem, Coras, Roxana, Guma, Monica, Manasson, Julia, Scher, Jose U., Barupal, Dinesh Kumar, Alseekh, Saleh, Fernie, Alisdair R., Mirnezami, Reza, Vasiliou, Vasilis, Schmid, Robin, Borisov, Roman S., Kulikova, Larisa N., Knight, Rob, Wang, Mingxun, Hanna, George B., Dorrestein, Pieter C., Veselkov, Kirill
Format Journal Article
LanguageEnglish
Published New York Nature Publishing Group US 01.02.2021
Nature Publishing Group
Springer Nature
Subjects
Online AccessGet full text
ISSN1087-0156
1546-1696
1546-1696
DOI10.1038/s41587-020-0700-3

Cover

More Information
Summary:We engineered a machine learning approach, MSHub, to enable auto-deconvolution of gas chromatography–mass spectrometry (GC–MS) data. We then designed workflows to enable the community to store, process, share, annotate, compare and perform molecular networking of GC–MS data within the Global Natural Product Social (GNPS) Molecular Networking analysis platform. MSHub/GNPS performs auto-deconvolution of compound fragmentation patterns via unsupervised non-negative matrix factorization and quantifies the reproducibility of fragmentation patterns across samples. A machine learning workflow enables auto-deconvolution of gas chromatography–mass spectrometry data.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMCID: PMC7971188
European Research Council (ERC)
AC05-76RL01830
PNNL-SA--150654
National Institutes of Health (NIH)
USDOE Office of Science (SC), Biological and Environmental Research (BER)
National Science Foundation
RSB, LNK, MP, AAA assembled the initial version of the public reference spectra library
AAA, AVM, MP, KJ, KD conducted 3D skin volatilome mapping studies
AAA, RS, IB, AAO, AMS, BA, MG, KNM, RSB produced training videos
MW, ZZ, AAA developed the workflows
ZZ, AA, ME generated molecular network plots
SD, IB, GH conducted oesophageal and gastric breath analysis cancers detection study
AS, XD, AAA, BBM conducted comparative testing of MSHub with existing deconvolution tools
PCD, AAA, WB, KV, RM, RK wrote the paper
IL, DV, VV, KV developed the MSHub platform
PCD, AAA, MW, LFN came up with the concept of GNPS for GC-MS data.
AAA, AVM, SD, BBM, MG, CC, AA, JM, RQ, AB, AAO, DP, AMS, SPC, TOM, MCB, CDN, EZ, VA, EHF, RG, MMM, IM, SE, PLB, BA, RL, YG, SP, AP, GD, BLB, AF, NS, KG, CS, RC, MG, JM, JUS, DB, SA, AF generated GC-MS data
MNE, AAA, MG, BBM, AS, LFN wrote and compiled tutorials and documentation
WB generated plots for MSHub algorithm performance testing and benchmarking against existing deconvolution tools
ME, JJJvdH adapted the MolNetEnhancer workflow for GC-MS Molecular Networks
KV designed and supervised MSHub platform development
AAA, ZZ, MW, BBM, RSB performed infrastructure testing and benchmarking
RS created MZmine export module for GNPS GC-MS input files and RI markers file export
Co-first author
Author contributions
AAA, ZZ assessed EI-based molecular networking
AAA, ZZ, MP, MW converted and added public libraries to GNPS
ISSN:1087-0156
1546-1696
1546-1696
DOI:10.1038/s41587-020-0700-3