云环境中改进FCM和规则参数优化的网络入侵检测方法

针对云环境中的网络入侵检测问题,提出一种基于模糊推理的网络入侵检测方法。首先,利用互信息特征选择对样本特征进行降维。然后,利用提出的改进模糊C均值聚类(IFCM)方法对训练样本集进行聚类,根据各样本特征与集群的对应关系获得初始模糊规则库。接着,对每个规则的前件参数和后件参数进行调优,以此获得准确的规则库。最后,基于规则库对输入连接数据进行模糊推理,对其进行分类以实现入侵检测。在云入侵检测数据集上的实验结果表明,该方法能够准确检测出网络入侵,具有可行性和有效性。...

Full description

Saved in:
Bibliographic Details
Published in电信科学 Vol. 34; no. 1; pp. 72 - 79
Main Author 张春琴;谢立春
Format Journal Article
LanguageChinese
Published 中国通信学会 2018
人民邮电出版社有限公司
浙江工业职业技术学院,浙江绍兴312000
浙江工业大学,浙江杭州310014%浙江工业职业技术学院,浙江绍兴,312000
Subjects
Online AccessGet full text
ISSN1000-0801
DOI10.11959/j.issn.1000-0801.2018005

Cover

Abstract 针对云环境中的网络入侵检测问题,提出一种基于模糊推理的网络入侵检测方法。首先,利用互信息特征选择对样本特征进行降维。然后,利用提出的改进模糊C均值聚类(IFCM)方法对训练样本集进行聚类,根据各样本特征与集群的对应关系获得初始模糊规则库。接着,对每个规则的前件参数和后件参数进行调优,以此获得准确的规则库。最后,基于规则库对输入连接数据进行模糊推理,对其进行分类以实现入侵检测。在云入侵检测数据集上的实验结果表明,该方法能够准确检测出网络入侵,具有可行性和有效性。
AbstractList 针对云环境中的网络入侵检测问题,提出一种基于模糊推理的网络入侵检测方法。首先,利用互信息特征选择对样本特征进行降维。然后,利用提出的改进模糊C均值聚类(IFCM)方法对训练样本集进行聚类,根据各样本特征与集群的对应关系获得初始模糊规则库。接着,对每个规则的前件参数和后件参数进行调优,以此获得准确的规则库。最后,基于规则库对输入连接数据进行模糊推理,对其进行分类以实现入侵检测。在云入侵检测数据集上的实验结果表明,该方法能够准确检测出网络入侵,具有可行性和有效性。
TP393; 针对云环境中的网络入侵检测问题,提出一种基于模糊推理的网络入侵检测方法.首先,利用互信息特征选择对样本特征进行降维.然后,利用提出的改进模糊C均值聚类(IFCM)方法对训练样本集进行聚类,根据各样本特征与集群的对应关系获得初始模糊规则库.接着,对每个规则的前件参数和后件参数进行调优,以此获得准确的规则库.最后,基于规则库对输入连接数据进行模糊推理,对其进行分类以实现入侵检测.在云入侵检测数据集上的实验结果表明,该方法能够准确检测出网络入侵,具有可行性和有效性.
Abstract_FL Aiming at the network intrusion detection problem in cloud environment,a method of network intrusion detection based on fuzzy inference was proposed.Firstly,it used the mutual information feature selection to reduce the feature of the sample.Then,the improved fuzzy C-means clustering method was used to cluster the training sample set,and the initial fuzzy rule base was got by the correspondence between each sample feature and cluster.After that,the refine parameter and consequent parameters of each rule were tuned to obtain an exact rule base.Finally,fuzzy inference was carried out on the input connection data based on the rule base,and it was classified to realize intrusion detection.Experimental results on the cloud intrusion detection dataset show that this method can detect the network intrusion accurately,and it is feasible and effective.
Author 张春琴;谢立春
AuthorAffiliation 浙江工业职业技术学院,浙江绍兴312000;浙江工业大学,浙江杭州310014
AuthorAffiliation_xml – name: 浙江工业职业技术学院,浙江绍兴312000;浙江工业大学,浙江杭州310014%浙江工业职业技术学院,浙江绍兴,312000
Author_FL ZANG Chunqin
XIE Lichun
Author_FL_xml – sequence: 1
  fullname: ZANG Chunqin
– sequence: 2
  fullname: XIE Lichun
Author_xml – sequence: 1
  fullname: 张春琴;谢立春
BookMark eNpNj0tLw0AcxPdQwVr7BbwpeEzcfx6b7FFKq0LFS-9hm2xqqqbaRaw30QqCRanY4uukiCdRkIL1-WXy6Mcw2CKeBmZ-zDATKOXXfI7QNGAZgOp0rip7QvgyYIwlbGKQFQwmxnoKpf-8cZQVwitjRSUawRTSKB-8teOTp_D2IHh9jM77g-_rQm45PGsNHprh0WV4uh91noOPi7DVja-a8Wc7fr8JD--Dr150txf1jqNuP3rpTKIxl60Lnh1pBpUK-VJuUSquLCzl5ouSbRAqORpxzGQVmOkowLnBCdG4A1A2FJ2YKqgu5wwTblBb5ZTboBnMdgkYlKqK6agZNDus3WG-y_yKVa1t1_1k0HIaa43fv8lVmnBTQ85mQli-EI5FDE0DDXSShDOjcLXmV7a8pGaz7m2w-u4_6AePuHnb
ClassificationCodes TP393
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
NSCOK
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.11959/j.issn.1000-0801.2018005
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
国家哲学社会科学文献中心 (National Center for Philosophy and Social Sciences Documentation)
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
DocumentTitleAlternate Network intrusion detection method based on improved FCM and rule parameter optimization in cloud environment
DocumentTitle_FL Network intrusion detection method based on improved FCM and rule parameter optimization in cloud environment
EndPage 79
ExternalDocumentID dxkx201801009
674414156
GrantInformation_xml – fundername: 国家自然科学基金青年科学基金资助项目; The Young Science Foundation of National Natural Science Foundation of China
  funderid: (61603211); (61603211)
GroupedDBID -0Y
2RA
5XA
5XJ
92L
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CQIGP
CUBFJ
GROUPED_DOAJ
U1G
U5S
W92
~WA
NSCOK
2B.
4A8
92I
93N
PSX
TCJ
ID FETCH-LOGICAL-c769-d46d80911a8d21ee7e664ed11b72568313feea06e79c3e9ec147acf61799328d3
ISSN 1000-0801
IngestDate Thu May 29 04:00:33 EDT 2025
Tue Jan 21 20:52:42 EST 2025
Wed Feb 14 10:09:28 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Issue 1
Keywords 云环境
模糊规则库优化
网络入侵检测
改进模糊C均值聚类
互信息特征选择
network intrusion detection
cloud environment
fuzzy rule base optimization
mutual information feature selection
improved fuzzy C-means clustering
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c769-d46d80911a8d21ee7e664ed11b72568313feea06e79c3e9ec147acf61799328d3
Notes ZANG Chunqin1,2, XIE Lichun1(1. Zhejiang Industry Polytechnic College, Shaoxing 312000, China ;2. Zhejiang University of Technology, Hangzhou 310014, China)
cloud environment, network intrusion detection, mutual information feature selection, improved fuzzy C-means clustering, fuzzy rule base optimization
Aiming at the network intrusion detection problem in cloud environment,a method of network intrusion detection based on fuzzy inference was proposed.Firstly,it used the mutual information feature selection to reduce the feature of the sample.Then,the improved fuzzy C-means clustering method was used to cluster the training sample set,and the initial fuzzy rule base was got by the correspondence between each sample feature and cluster.After that,the refine parameter and consequent parameters of each rule were tuned to obtain an exact rule base.Finally,fuzzy inference was carried out on the input connection data based on the rule base,and it was classified to realize intrusion detection.Experimental results on t
OpenAccessLink http://dx.doi.org/10.11959/j.issn.1000-0801.2018005
PageCount 8
ParticipantIDs wanfang_journals_dxkx201801009
cass_nssd_674414156
chongqing_primary_674414156
PublicationCentury 2000
PublicationDate 2018
2018-01-01
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – year: 2018
  text: 2018
PublicationDecade 2010
PublicationTitle 电信科学
PublicationTitleAlternate Telecommunications Science
PublicationTitle_FL Telecommunications Science
PublicationYear 2018
Publisher 中国通信学会
人民邮电出版社有限公司
浙江工业职业技术学院,浙江绍兴312000
浙江工业大学,浙江杭州310014%浙江工业职业技术学院,浙江绍兴,312000
Publisher_xml – name: 人民邮电出版社有限公司
– name: 中国通信学会
– name: 浙江工业职业技术学院,浙江绍兴312000
– name: 浙江工业大学,浙江杭州310014%浙江工业职业技术学院,浙江绍兴,312000
SSID ssib023646091
ssj0002912124
ssib001102832
ssib000459930
ssib051374496
ssib036437025
ssib017479463
ssib058759007
Score 1.7391001
Snippet 针对云环境中的网络入侵检测问题,提出一种基于模糊推理的网络入侵检测方法。首先,利用互信息特征选择对样本特征进行降维。然后,利用提出的改进模糊C均值聚类(IFCM)方法对...
TP393; 针对云环境中的网络入侵检测问题,提出一种基于模糊推理的网络入侵检测方法.首先,利用互信息特征选择对样本特征进行降维.然后,利用提出的改进模糊C均值聚类(IFCM)方...
SourceID wanfang
cass
chongqing
SourceType Aggregation Database
Publisher
StartPage 72
SubjectTerms 云环境
互信息特征选择
改进模糊C均值聚类
模糊规则库优化
网络入侵检测
Title 云环境中改进FCM和规则参数优化的网络入侵检测方法
URI http://lib.cqvip.com/qk/90580X/201801/674414156.html
https://www.ncpssd.cn/Literature/articleinfo?id=674414156&type=journalArticle
https://d.wanfangdata.com.cn/periodical/dxkx201801009
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  issn: 1000-0801
  databaseCode: DOA
  dateStart: 20090101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: true
  ssIdentifier: ssj0002912124
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  issn: 1000-0801
  databaseCode: M~E
  dateStart: 20120101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://road.issn.org
  omitProxy: true
  ssIdentifier: ssib058759007
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Ja9VAGB9qBfEirlirpYJzTM1kmcwck9c8i1BPFXp75CWTFoRXtS2UHkS0gmBRKra4nRTxJApSsK7_zFv6Z_h9k3l5EVtcLmEyyzffksz85puNkAssT1LG88xiSW5bXp4xS2aZa3EulMxdlqQ5-jumr_Cpq97lWX926MClyqql5aXmRLq6576S_7EqxIFdcZfsP1i2JAoREAb7whMsDM-_sjGNPRqFVDIaB1TENKzT2KehQ4WrkwQNJ2nMqYSwpLGgUZ3KqF6bxmwSstUwMoSyHsYIQaXUgToVji7o08jWpGpUCp0EAY7VyVCXCmg0aRiIIiprOg_w4OtSMY18pBO6uKICAvAqIk2Za5bg6dLi_ss-RNbEPV3QQ4ZDTRyYxFp8lCgsvYkYAayFmjYwiNVCRptG3iCLQBlAKUgl6lePeaseD9M849dp-JQFe4xKrdUo6AslUHagKphWYBnDqQiNmKAHYwvklsYSqQELTm0v4lp1YtKoLgKwhTubKt2F3pcvjDvG9CfGOVv9b4rOobijyMCM4gqd3zsw6UvdgyH9iZI-rkEEaO8Peu1yLWW2cm1FpzK9kfWgEwDkwjWst-IqbpeyOn2qYWWJa_ESAW4PDk1ycTa3Mv3sMzfwvMG5jD4McqVt_AYIeRzJAALpFRx9jg-R8315Lu4nDcCgFIaIeKzJ_EJr7gaANb13rpUnrbkKzJs5So6Y8dl4WPxsx8jQ6vwJErc_b_Qevu-8utv-9K77ZGf3xwv4iTqP13ffrnXuP-s8utPd_ND--rSzvtV7vtb7ttH78rJz7037-3b39e3u9oPu1k734-ZJMlOPZ2pTlrl_xEoDLq3M45kArbBEZA5TKlCceypjrBnAOEG4zM2VSmyuApm6SqqUeQE0bRzPWHQdkbmnyHBroaVOk_EgEZynfpPjCCnPfZEmuVQcmsamUHaejZDjqIhGa3Exa3DQNUO_yggZLfXSuF4cPlNNHTOaapgmabHxy7dw5k8ZRslhDBcOxbNkeOnmsjoHEHupOaZdU2P6I_oJk4GiKg
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E4%BA%91%E7%8E%AF%E5%A2%83%E4%B8%AD%E6%94%B9%E8%BF%9BFCM%E5%92%8C%E8%A7%84%E5%88%99%E5%8F%82%E6%95%B0%E4%BC%98%E5%8C%96%E7%9A%84%E7%BD%91%E7%BB%9C%E5%85%A5%E4%BE%B5%E6%A3%80%E6%B5%8B%E6%96%B9%E6%B3%95&rft.jtitle=%E7%94%B5%E4%BF%A1%E7%A7%91%E5%AD%A6&rft.au=%E5%BC%A0%E6%98%A5%E7%90%B4&rft.au=%E8%B0%A2%E7%AB%8B%E6%98%A5&rft.date=2018&rft.pub=%E6%B5%99%E6%B1%9F%E5%B7%A5%E4%B8%9A%E8%81%8C%E4%B8%9A%E6%8A%80%E6%9C%AF%E5%AD%A6%E9%99%A2%2C%E6%B5%99%E6%B1%9F%E7%BB%8D%E5%85%B4312000&rft.issn=1000-0801&rft.volume=34&rft.issue=1&rft.spage=72&rft.epage=79&rft_id=info:doi/10.11959%2Fj.issn.1000-0801.2018005&rft.externalDocID=dxkx201801009
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90580X%2F90580X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fdxkx%2Fdxkx.jpg