云环境中改进FCM和规则参数优化的网络入侵检测方法

针对云环境中的网络入侵检测问题,提出一种基于模糊推理的网络入侵检测方法。首先,利用互信息特征选择对样本特征进行降维。然后,利用提出的改进模糊C均值聚类(IFCM)方法对训练样本集进行聚类,根据各样本特征与集群的对应关系获得初始模糊规则库。接着,对每个规则的前件参数和后件参数进行调优,以此获得准确的规则库。最后,基于规则库对输入连接数据进行模糊推理,对其进行分类以实现入侵检测。在云入侵检测数据集上的实验结果表明,该方法能够准确检测出网络入侵,具有可行性和有效性。...

Full description

Saved in:
Bibliographic Details
Published in电信科学 Vol. 34; no. 1; pp. 72 - 79
Main Author 张春琴;谢立春
Format Journal Article
LanguageChinese
Published 中国通信学会 2018
人民邮电出版社有限公司
浙江工业职业技术学院,浙江绍兴312000
浙江工业大学,浙江杭州310014%浙江工业职业技术学院,浙江绍兴,312000
Subjects
Online AccessGet full text
ISSN1000-0801
DOI10.11959/j.issn.1000-0801.2018005

Cover

More Information
Summary:针对云环境中的网络入侵检测问题,提出一种基于模糊推理的网络入侵检测方法。首先,利用互信息特征选择对样本特征进行降维。然后,利用提出的改进模糊C均值聚类(IFCM)方法对训练样本集进行聚类,根据各样本特征与集群的对应关系获得初始模糊规则库。接着,对每个规则的前件参数和后件参数进行调优,以此获得准确的规则库。最后,基于规则库对输入连接数据进行模糊推理,对其进行分类以实现入侵检测。在云入侵检测数据集上的实验结果表明,该方法能够准确检测出网络入侵,具有可行性和有效性。
Bibliography:ZANG Chunqin1,2, XIE Lichun1(1. Zhejiang Industry Polytechnic College, Shaoxing 312000, China ;2. Zhejiang University of Technology, Hangzhou 310014, China)
cloud environment, network intrusion detection, mutual information feature selection, improved fuzzy C-means clustering, fuzzy rule base optimization
Aiming at the network intrusion detection problem in cloud environment,a method of network intrusion detection based on fuzzy inference was proposed.Firstly,it used the mutual information feature selection to reduce the feature of the sample.Then,the improved fuzzy C-means clustering method was used to cluster the training sample set,and the initial fuzzy rule base was got by the correspondence between each sample feature and cluster.After that,the refine parameter and consequent parameters of each rule were tuned to obtain an exact rule base.Finally,fuzzy inference was carried out on the input connection data based on the rule base,and it was classified to realize intrusion detection.Experimental results on t
ISSN:1000-0801
DOI:10.11959/j.issn.1000-0801.2018005