Butyrate-Induced Transcriptional Changes in Human Colonic Mucosa

Fermentation of dietary fiber in the colon results in the production of short chain fatty acids (mainly propionate, butyrate and acetate). Butyrate modulates a wide range of processes, but its mechanism of action is mostly unknown. This study aimed to determine the effects of butyrate on the transcr...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 4; no. 8; p. e6759
Main Authors Vanhoutvin, Steven A. L. W., Troost, Freddy J., Hamer, Henrike M., Lindsey, Patrick J., Koek, Ger H., Jonkers, Daisy M. A. E., Kodde, Andrea, Venema, Koen, Brummer, Robert J. M.
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 25.08.2009
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0006759

Cover

More Information
Summary:Fermentation of dietary fiber in the colon results in the production of short chain fatty acids (mainly propionate, butyrate and acetate). Butyrate modulates a wide range of processes, but its mechanism of action is mostly unknown. This study aimed to determine the effects of butyrate on the transcriptional regulation of human colonic mucosa in vivo. Five hundred genes were found to be differentially expressed after a two week daily butyrate administration with enemas. Pathway analysis showed that the butyrate intervention mainly resulted in an increased transcriptional regulation of the pathways representing fatty acid oxidation, electron transport chain and oxidative stress. In addition, several genes associated with epithelial integrity and apoptosis, were found to be differentially expressed after the butyrate intervention. Colonic administration of butyrate in concentrations that can be achieved by consumption of a high-fiber diet enhances the maintenance of colonic homeostasis in healthy subjects, by regulating fatty acid metabolism, electron transport and oxidative stress pathways on the transcriptional level and provide for the first time, detailed molecular insight in the transcriptional response of gut mucosa to butyrate.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Undefined-3
Conceived and designed the experiments: SALWV FT HMH GHK DMAEJ AK KV RJB. Performed the experiments: SALWV HMH GHK RJB. Analyzed the data: PL. Contributed reagents/materials/analysis tools: AK. Wrote the paper: SALWV FT. Made significant corrections to the manuscript: FT PL DMAEJ KV.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0006759