Deep learning-based classification of adequate sonographic images for self-diagnosing deep vein thrombosis

Pulmonary thromboembolism is a serious disease that often occurs in disaster victims evacuated to shelters. Deep vein thrombosis is the most common reason for pulmonary thromboembolism, and early prevention is important. Medical technicians often perform ultrasonography as part of mobile medical scr...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 18; no. 3; p. e0282747
Main Authors Nakayama, Yusuke, Sato, Mitsuru, Okamoto, Masashi, Kondo, Yohan, Tamura, Manami, Minagawa, Yasuko, Uchiyama, Mieko, Horii, Yosuke
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 06.03.2023
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0282747

Cover

More Information
Summary:Pulmonary thromboembolism is a serious disease that often occurs in disaster victims evacuated to shelters. Deep vein thrombosis is the most common reason for pulmonary thromboembolism, and early prevention is important. Medical technicians often perform ultrasonography as part of mobile medical screenings of disaster victims but reaching all isolated and scattered shelters is difficult. Therefore, deep vein thrombosis medical screening methods that can be easily performed by anyone are needed. The purpose of this study was to develop a method to automatically identify cross-sectional images suitable for deep vein thrombosis diagnosis so disaster victims can self-assess their risk of deep vein thrombosis. Ultrasonographic images of the popliteal vein were acquired in 20 subjects using stationary and portable ultrasound diagnostic equipment. Images were obtained by frame split from video. Images were classified as "Satisfactory," "Moderately satisfactory," and "Unsatisfactory" according to the level of popliteal vein visualization. Fine-tuning and classification were performed using ResNet101, a deep learning model. Acquiring images with portable ultrasound diagnostic equipment resulted in a classification accuracy of 0.76 and an area under the receiver operating characteristic curve of 0.89. Acquiring images with stationary ultrasound diagnostic equipment resulted in a classification accuracy of 0.73 and an area under the receiver operating characteristic curve of 0.88. A method for automatically identifying appropriate diagnostic cross-sectional ultrasonographic images of the popliteal vein was developed. This elemental technology is sufficiently accurate to automatically self-assess the risk of deep vein thrombosis by disaster victims.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0282747