The Crz1/Sp1 Transcription Factor of Cryptococcus neoformans Is Activated by Calcineurin and Regulates Cell Wall Integrity

Cryptococcus neoformans survives host temperature and regulates cell wall integrity via a calcium-dependent phosphatase, calcineurin. However, downstream effectors of C. neoformans calcineurin are largely unknown. In S. cerevisiae and other fungal species, a calcineurin-dependent transcription facto...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 7; no. 12; p. e51403
Main Authors Lev, Sophie, Desmarini, Desmarini, Chayakulkeeree, Methee, Sorrell, Tania C., Djordjevic, Julianne T.
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 12.12.2012
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0051403

Cover

More Information
Summary:Cryptococcus neoformans survives host temperature and regulates cell wall integrity via a calcium-dependent phosphatase, calcineurin. However, downstream effectors of C. neoformans calcineurin are largely unknown. In S. cerevisiae and other fungal species, a calcineurin-dependent transcription factor Crz1, translocates to nuclei upon activation and triggers expression of target genes. We now show that the C. neoformans Crz1 ortholog (Crz1/Sp1), previously identified as a protein kinase C target during starvation, is a bona fide target of calcineurin under non-starvation conditions, during cell wall stress and growth at high temperature. Both the calcineurin-defective mutant, Δcna1, and a CRZ1/SP1 mutant (Δcrz1) were susceptible to cell wall perturbing agents. Furthermore, expression of the chitin synthase encoding gene, CHS6, was reduced in both mutants. We tracked the subcellular localization of Crz1-GFP in WT C. neoformans and Δcna1 in response to different stimuli, in the presence and absence of the calcineurin inhibitor, FK506. Exposure to elevated temperature (30-37°C vs 25°C) and extracellular calcium caused calcineurin-dependent nuclear accumulation of Crz1-GFP. Unexpectedly, 1M salt and heat shock triggered calcineurin-independent Crz1-GFP sequestration within cytosolic and nuclear puncta. To our knowledge, punctate cytosolic distribution, as opposed to nuclear targeting, is a unique feature of C. neoformans Crz1. We conclude that Crz1 is selectively activated by calcium/calcineurin-dependent and independent signals depending on the environmental conditions.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
Conceived and designed the experiments: SL JTD DD. Performed the experiments: SL DD MC. Analyzed the data: SL JTD DD TCS MC. Contributed reagents/materials/analysis tools: JTD TCS SL. Wrote the paper: SL JTD.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0051403