Ground Reaction Force Estimates from ActiGraph GT3X+ Hip Accelerations

Simple methods to quantify ground reaction forces (GRFs) outside a laboratory setting are needed to understand daily loading sustained by the body. Here, we present methods to estimate peak vertical GRF (pGRFvert) and peak braking GRF (pGRFbrake) in adults using raw hip activity monitor (AM) acceler...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 9; no. 6; p. e99023
Main Authors Neugebauer, Jennifer M., Collins, Kelsey H., Hawkins, David A.
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 10.06.2014
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0099023

Cover

More Information
Summary:Simple methods to quantify ground reaction forces (GRFs) outside a laboratory setting are needed to understand daily loading sustained by the body. Here, we present methods to estimate peak vertical GRF (pGRFvert) and peak braking GRF (pGRFbrake) in adults using raw hip activity monitor (AM) acceleration data. The purpose of this study was to develop a statistically based model to estimate pGRFvert and pGRFbrake during walking and running from ActiGraph GT3X+ AM acceleration data. 19 males and 20 females (age 21.2 ± 1.3 years, height 1.73 ± 0.12 m, mass 67.6 ± 11.5 kg) wore an ActiGraph GT3X+ AM over their right hip. Six walking and six running trials (0.95-2.19 and 2.20-4.10 m/s, respectively) were completed. Average of the peak vertical and anterior/posterior AM acceleration (ACCvert and ACCbrake, respectively) and pGRFvert and pGRFbrake during the stance phase of gait were determined. Thirty randomly selected subjects served as the training dataset to develop generalized equations to predict pGRFvert and pGRFbrake. Using a holdout approach, the remaining 9 subjects were used to test the accuracy of the models. Generalized equations to predict pGRFvert and pGRFbrake included ACCvert and ACCbrake, respectively, mass, type of locomotion (walk or run), and type of locomotion acceleration interaction. The average absolute percent differences between actual and predicted pGRFvert and pGRFbrake were 8.3% and 17.8%, respectively, when the models were applied to the test dataset. Repeated measures generalized regression equations were developed to predict pGRFvert and pGRFbrake from ActiGraph GT3X+ AM acceleration for young adults walking and running. These equations provide a means to estimate GRFs without a force plate.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Undefined-3
Conceived and designed the experiments: DAH JMN KHC. Performed the experiments: KHC JMN DAH. Analyzed the data: JMN DAH KHC. Contributed reagents/materials/analysis tools: DAH JMN KHC. Wrote the paper: JMN DAH KHC.
Competing Interests: Actigraph provided a gift of two activity monitors and support for a research assistant to collect the gait data. Actigraph LLC had no influence on the study design, employment of students involved in the project, choice of statistical consultants, manuscript content, publication decisions, or any other aspects of the study. There are no further patents, products in development or marketed products to declare. This does not alter the authors' adherence to all the PLOS ONE policies on sharing data and materials.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0099023