Combinatorial Contextualization of Peptidic Epitopes for Enhanced Cellular Immunity

Invocation of cellular immunity by epitopic peptides remains largely dependent on empirically developed protocols, such as interfusion of aluminum salts or emulsification using terpenoids and surfactants. To explore novel vaccine formulation, epitopic peptide motifs were co-programmed with structura...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 9; no. 10; p. e110425
Main Authors Ito, Masaki, Hayashi, Kazumi, Adachi, Eru, Minamisawa, Tamiko, Homma, Sadamu, Koido, Shigeo, Shiba, Kiyotaka
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 24.10.2014
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0110425

Cover

More Information
Summary:Invocation of cellular immunity by epitopic peptides remains largely dependent on empirically developed protocols, such as interfusion of aluminum salts or emulsification using terpenoids and surfactants. To explore novel vaccine formulation, epitopic peptide motifs were co-programmed with structural motifs to produce artificial antigens using our "motif-programming" approach. As a proof of concept, we used an ovalbumin (OVA) system and prepared an artificial protein library by combinatorially polymerizing MHC class I and II sequences from OVA along with a sequence that tends to form secondary structures. The purified endotoxin-free proteins were then examined for their ability to activate OVA-specific T-cell hybridoma cells after being processed within dendritic cells. One clone, F37A (containing three MHC I and two MHC II OVA epitopes), possessed a greater ability to evoke cellular immunity than the native OVA or the other artificial antigens. The sensitivity profiles of drugs that interfered with the F37A uptake differed from those of the other artificial proteins and OVA, suggesting that alteration of the cross-presentation pathway is responsible for the enhanced immunogenicity. Moreover, F37A, but not an epitopic peptide, invoked cellular immunity when injected together with monophosphoryl lipid A (MPL), and retarded tumor growth in mice. Thus, an artificially synthesized protein antigen induced cellular immunity in vivo in the absence of incomplete Freund's adjuvant or aluminum salts. The method described here could be potentially used for developing vaccines for such intractable ailments as AIDS, malaria and cancer, ailments in which cellular immunity likely play a crucial role in prevention and treatment.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
Conceived and designed the experiments: MI KS. Performed the experiments: MI KH EA TM SH SK. Analyzed the data: MI KS. Contributed reagents/materials/analysis tools: MI KH EA TM. Wrote the paper: MI KS.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0110425