Analysis and Systematic Discretization of a Fokker–Planck Equation with Lorentz Force
The propagation of charged particles through a scattering medium in the presence of a magnetic field can be described by a Fokker–Planck equation with Lorentz force. This model is studied both from a theoretical and a numerical point of view. A particular trace estimate is derived for the relevant f...
Saved in:
Published in | Journal of computational methods in applied mathematics |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
16.09.2025
|
Online Access | Get full text |
ISSN | 1609-4840 1609-9389 |
DOI | 10.1515/cmam-2025-0061 |
Cover
Abstract | The propagation of charged particles through a scattering medium in the presence of a magnetic field can be described by a Fokker–Planck equation with Lorentz force. This model is studied both from a theoretical and a numerical point of view. A particular trace estimate is derived for the relevant function spaces to clarify the meaning of boundary values. Existence of a weak solution is then proven by the Rothe method. In the second step of our investigations, a fully practical discretization scheme is proposed based on an implicit Euler method for the energy variable and a spherical-harmonics finite-element discretization with respect to the remaining variables. A complete error analysis of the resulting scheme is given and numerical tests are presented to illustrate the theoretical results and the performance of the proposed method. |
---|---|
AbstractList | The propagation of charged particles through a scattering medium in the presence of a magnetic field can be described by a Fokker–Planck equation with Lorentz force. This model is studied both from a theoretical and a numerical point of view. A particular trace estimate is derived for the relevant function spaces to clarify the meaning of boundary values. Existence of a weak solution is then proven by the Rothe method. In the second step of our investigations, a fully practical discretization scheme is proposed based on an implicit Euler method for the energy variable and a spherical-harmonics finite-element discretization with respect to the remaining variables. A complete error analysis of the resulting scheme is given and numerical tests are presented to illustrate the theoretical results and the performance of the proposed method. |
Author | Bosboom, Vincent Schlottbom, Matthias Egger, Herbert |
Author_xml | – sequence: 1 givenname: Vincent orcidid: 0000-0003-4419-0494 surname: Bosboom fullname: Bosboom, Vincent organization: Department of Applied Mathematics , University of Twente , Enschede , The Netherlands – sequence: 2 givenname: Herbert surname: Egger fullname: Egger, Herbert organization: Department of Mathematics and Johann Radon Institute for Computational and Applied Mathematics , 27266 Johannes Kepler Universität , Linz , Austria – sequence: 3 givenname: Matthias orcidid: 0000-0002-2527-6498 surname: Schlottbom fullname: Schlottbom, Matthias organization: Department of Applied Mathematics , University of Twente , Enschede , The Netherlands |
BookMark | eNotkN1KwzAUx4NMcM7dep0X6EyapE0vx9xUGCg48LKcpicY1qaaVGS78h18Q5_Elu3q_3U4F79rMvGdR0JuOVtwxdWdaaFNUpaqhLGMX5Apz1iRFEIXk7OXWrIrMo_RVYzplKcy51PytvTQHKKLFHxNXw-xxxZ6Z-i9iyZg745D6jztLAW66fZ7DH8_vy8NeLOn68-v0_rt-ne67QL6_jhcBYM35NJCE3F-1hnZbda71WOyfX54Wi23ickVT2wqLUctsypXYGSualBDBTpTKAtRKFHVWGgwmZACpLVZjXklNSppKqy1mJHF6a0JXYwBbfkRXAvhUHJWjmDKEUw5gilHMOIfsiRa8g |
Cites_doi | 10.1142/S0218202508002784 10.2172/800993 10.1007/978-0-387-70914-7 10.1088/2057-1976/abd239 10.1142/S021820251150014X 10.1137/15M1051336 10.1016/B978-0-12-386944-9.50023-6 10.3934/krm.2012.5.485 10.1016/j.jmaa.2013.04.063 10.1103/RevModPhys.15.1 10.1118/1.4905041 10.1007/978-3-540-85369-5_5 10.1118/1.4937933 10.1142/S0218202510004386 10.1016/j.jmaa.2022.126946 10.1080/00411458708204307 10.1137/1.9780898719208 10.1142/S021820259200003X 10.1088/1361-6560/acf4de 10.1088/0031-9155/51/3/013 10.1090/conm/586/11649 10.1007/978-3-0348-0513-1 10.1088/0031-9155/51/9/010 10.1007/978-1-4612-1994-1 10.1118/1.597920 10.1017/CBO9780511618833 10.1137/S0036142998344706 10.1088/0031-9155/60/13/4963 10.1007/978-3-662-25839-2_2 10.24033/asens.1516 10.1007/BF02165003 10.1088/1361-6560/ab9efe 10.1088/0031-9155/55/3/002 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1515/cmam-2025-0061 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1609-9389 |
ExternalDocumentID | 10_1515_cmam_2025_0061 |
GroupedDBID | 0R~ 2WC 4.4 AAAEU AAAVF AACIX AADQG AAFPC AAGVJ AAILP AAJBH AAKDD AALGR AAOUV AAPJK AAQCX AARVR AASOL AASQH AAXCG AAYXX ABAOT ABAQN ABFKT ABIQR ABJNI ABMBZ ABPLS ABSOE ABUVI ABWLS ABXMZ ABYKJ ACDEB ACEFL ACGFS ACHNZ ACIPV ACIWK ACONX ACPMA ACUND ACZBO ADEQT ADGQD ADGYE ADJVZ ADNPR ADOZN AECWL AEDGQ AEGVQ AEICA AEJQW AEMOE AENEX AEQDQ AEQLX AERZL AEXIE AFBAA AFBDD AFBQV AFCXV AFKRA AFQUK AFYRI AGBEV AGQYU AHCWZ AHVWV AHXUK AIERV AIWOI AJATJ AKXKS ALMA_UNASSIGNED_HOLDINGS ALWYM ARAPS ASYPN BAKPI BBCWN BCIFA BENPR CFGNV CITATION DASCH DSRVY EBS HCIFZ HZ~ IY9 J9A K.~ KDIRW O9- P2P QD8 SA. TR2 UK5 WTRAM |
ID | FETCH-LOGICAL-c751-f24f1e846b75ac475da524fa865e493953bde98ac6343a4ff6de7b48e54cbed83 |
ISSN | 1609-4840 |
IngestDate | Wed Oct 01 05:15:05 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c751-f24f1e846b75ac475da524fa865e493953bde98ac6343a4ff6de7b48e54cbed83 |
ORCID | 0000-0002-2527-6498 0000-0003-4419-0494 |
ParticipantIDs | crossref_primary_10_1515_cmam_2025_0061 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-09-16 |
PublicationDateYYYYMMDD | 2025-09-16 |
PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-16 day: 16 |
PublicationDecade | 2020 |
PublicationTitle | Journal of computational methods in applied mathematics |
PublicationYear | 2025 |
References | 2025091821510448511_j_cmam-2025-0061_ref_009 2025091821510448511_j_cmam-2025-0061_ref_008 2025091821510448511_j_cmam-2025-0061_ref_003 2025091821510448511_j_cmam-2025-0061_ref_025 2025091821510448511_j_cmam-2025-0061_ref_002 2025091821510448511_j_cmam-2025-0061_ref_024 2025091821510448511_j_cmam-2025-0061_ref_001 2025091821510448511_j_cmam-2025-0061_ref_023 2025091821510448511_j_cmam-2025-0061_ref_022 2025091821510448511_j_cmam-2025-0061_ref_007 2025091821510448511_j_cmam-2025-0061_ref_029 2025091821510448511_j_cmam-2025-0061_ref_006 2025091821510448511_j_cmam-2025-0061_ref_028 2025091821510448511_j_cmam-2025-0061_ref_005 2025091821510448511_j_cmam-2025-0061_ref_027 2025091821510448511_j_cmam-2025-0061_ref_004 2025091821510448511_j_cmam-2025-0061_ref_026 2025091821510448511_j_cmam-2025-0061_ref_021 2025091821510448511_j_cmam-2025-0061_ref_020 2025091821510448511_j_cmam-2025-0061_ref_040 2025091821510448511_j_cmam-2025-0061_ref_019 2025091821510448511_j_cmam-2025-0061_ref_014 2025091821510448511_j_cmam-2025-0061_ref_036 2025091821510448511_j_cmam-2025-0061_ref_013 2025091821510448511_j_cmam-2025-0061_ref_035 2025091821510448511_j_cmam-2025-0061_ref_012 2025091821510448511_j_cmam-2025-0061_ref_034 2025091821510448511_j_cmam-2025-0061_ref_011 2025091821510448511_j_cmam-2025-0061_ref_033 2025091821510448511_j_cmam-2025-0061_ref_018 2025091821510448511_j_cmam-2025-0061_ref_017 2025091821510448511_j_cmam-2025-0061_ref_039 2025091821510448511_j_cmam-2025-0061_ref_016 2025091821510448511_j_cmam-2025-0061_ref_038 2025091821510448511_j_cmam-2025-0061_ref_015 2025091821510448511_j_cmam-2025-0061_ref_037 2025091821510448511_j_cmam-2025-0061_ref_010 2025091821510448511_j_cmam-2025-0061_ref_032 2025091821510448511_j_cmam-2025-0061_ref_031 2025091821510448511_j_cmam-2025-0061_ref_030 |
References_xml | – ident: 2025091821510448511_j_cmam-2025-0061_ref_039 – ident: 2025091821510448511_j_cmam-2025-0061_ref_020 doi: 10.1142/S0218202508002784 – ident: 2025091821510448511_j_cmam-2025-0061_ref_009 doi: 10.2172/800993 – ident: 2025091821510448511_j_cmam-2025-0061_ref_008 doi: 10.1007/978-0-387-70914-7 – ident: 2025091821510448511_j_cmam-2025-0061_ref_038 doi: 10.1088/2057-1976/abd239 – ident: 2025091821510448511_j_cmam-2025-0061_ref_017 doi: 10.1142/S021820251150014X – ident: 2025091821510448511_j_cmam-2025-0061_ref_018 doi: 10.1137/15M1051336 – ident: 2025091821510448511_j_cmam-2025-0061_ref_031 doi: 10.1016/B978-0-12-386944-9.50023-6 – ident: 2025091821510448511_j_cmam-2025-0061_ref_024 doi: 10.3934/krm.2012.5.485 – ident: 2025091821510448511_j_cmam-2025-0061_ref_034 doi: 10.1016/j.jmaa.2013.04.063 – ident: 2025091821510448511_j_cmam-2025-0061_ref_010 doi: 10.1103/RevModPhys.15.1 – ident: 2025091821510448511_j_cmam-2025-0061_ref_037 doi: 10.1118/1.4905041 – ident: 2025091821510448511_j_cmam-2025-0061_ref_001 – ident: 2025091821510448511_j_cmam-2025-0061_ref_026 doi: 10.1007/978-3-540-85369-5_5 – ident: 2025091821510448511_j_cmam-2025-0061_ref_036 doi: 10.1118/1.4937933 – ident: 2025091821510448511_j_cmam-2025-0061_ref_011 – ident: 2025091821510448511_j_cmam-2025-0061_ref_019 doi: 10.1142/S0218202510004386 – ident: 2025091821510448511_j_cmam-2025-0061_ref_004 doi: 10.1016/j.jmaa.2022.126946 – ident: 2025091821510448511_j_cmam-2025-0061_ref_015 doi: 10.1080/00411458708204307 – ident: 2025091821510448511_j_cmam-2025-0061_ref_012 doi: 10.1137/1.9780898719208 – ident: 2025091821510448511_j_cmam-2025-0061_ref_032 doi: 10.1142/S021820259200003X – ident: 2025091821510448511_j_cmam-2025-0061_ref_006 doi: 10.1088/1361-6560/acf4de – ident: 2025091821510448511_j_cmam-2025-0061_ref_023 doi: 10.1088/0031-9155/51/3/013 – ident: 2025091821510448511_j_cmam-2025-0061_ref_022 doi: 10.1090/conm/586/11649 – ident: 2025091821510448511_j_cmam-2025-0061_ref_033 doi: 10.1007/978-3-0348-0513-1 – ident: 2025091821510448511_j_cmam-2025-0061_ref_021 doi: 10.1088/0031-9155/51/9/010 – ident: 2025091821510448511_j_cmam-2025-0061_ref_002 doi: 10.1007/978-1-4612-1994-1 – ident: 2025091821510448511_j_cmam-2025-0061_ref_013 – ident: 2025091821510448511_j_cmam-2025-0061_ref_027 doi: 10.1118/1.597920 – ident: 2025091821510448511_j_cmam-2025-0061_ref_003 doi: 10.1017/CBO9780511618833 – ident: 2025091821510448511_j_cmam-2025-0061_ref_030 doi: 10.1137/S0036142998344706 – ident: 2025091821510448511_j_cmam-2025-0061_ref_007 doi: 10.1088/0031-9155/60/13/4963 – ident: 2025091821510448511_j_cmam-2025-0061_ref_029 doi: 10.1007/978-3-662-25839-2_2 – ident: 2025091821510448511_j_cmam-2025-0061_ref_014 doi: 10.24033/asens.1516 – ident: 2025091821510448511_j_cmam-2025-0061_ref_025 – ident: 2025091821510448511_j_cmam-2025-0061_ref_028 – ident: 2025091821510448511_j_cmam-2025-0061_ref_005 doi: 10.1007/BF02165003 – ident: 2025091821510448511_j_cmam-2025-0061_ref_016 doi: 10.1088/1361-6560/ab9efe – ident: 2025091821510448511_j_cmam-2025-0061_ref_040 doi: 10.1088/0031-9155/55/3/002 – ident: 2025091821510448511_j_cmam-2025-0061_ref_035 |
SSID | ssib008212471 ssj0033936 ssib006285865 |
Score | 2.3318498 |
SecondaryResourceType | online_first |
Snippet | The propagation of charged particles through a scattering medium in the presence of a magnetic field can be described by a Fokker–Planck equation with Lorentz... |
SourceID | crossref |
SourceType | Index Database |
Title | Analysis and Systematic Discretization of a Fokker–Planck Equation with Lorentz Force |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAZK databaseName: De Gruyter Journals (UEF Package) customDbUrl: eissn: 1609-9389 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033936 issn: 1609-4840 databaseCode: AGBEV dateStart: 20010120 isFulltext: true titleUrlDefault: https://www.degruyterbrill.com providerName: Walter de Gruyter |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtRAEG2FyQUOERAQu_qAxCFyYHrxcgwwyShKuDAEblYv5TAKMw6DueTEP_CHfAnVy3hJcghcLKvlai_vuV3drnpFyEvFjWTCyiSz1iZCVDrRikFSZKCYxfkH8yKuxx_S6Sdx-EX2frT77JJG75qLa_NK_gdVbENcXZbsPyDbdooNuI_44hYRxu2NMG4VRXz8ZafJ_H6OgwE0McUypEDu12cugCLGNnBXrMic7Uy-B6nvsB57VDutpgs8dmWGIUKd22p8GYj1EmIoQO1jalX0ZxetEGy3Al__QGfeM-9kvjS9WJvJ6WngzBThhVXb_tF8_VY3jQ5Gvij5XA2WKJh08RQhgzKOqqkrZZcHXaZd6NoKHuoHXRnHpZe8MAu1SEKHb4Jk-1Aw-9KHrA0vdBMb7KF09qWzL539LbLJsjRlI7K5d_B2ctINOyyXee9nb46fc5G1kUKcF77SZHsXUfsTz_B6eIU936bnpMzukq0IE90LVLlHNmB5n9w57hDZJp_XpKFIGtqRhg5JQ-uKKhpI8-fX70AXuqYLdXShkS7U0-UBme1PZu-mSayukZhMjpOKiWoM6H3qTCojMmkVvrSVwgcBouCF5NpCkSuTcsGVqKrUQqZFDlIYDTbnD8loWS_hEaEWp8Fcwzit0JRpq7UqQOfcWC4KMOPH5NX6sZTnQUOlvB6iJzc-8im53THtGRk1q5_wHN3DRr-I8P4FOYhn2g |
linkProvider | Walter de Gruyter |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+and+Systematic+Discretization+of+a+Fokker%E2%80%93Planck+Equation+with+Lorentz+Force&rft.jtitle=Journal+of+computational+methods+in+applied+mathematics&rft.au=Bosboom%2C+Vincent&rft.au=Egger%2C+Herbert&rft.au=Schlottbom%2C+Matthias&rft.date=2025-09-16&rft.issn=1609-4840&rft.eissn=1609-9389&rft_id=info:doi/10.1515%2Fcmam-2025-0061&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_cmam_2025_0061 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1609-4840&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1609-4840&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1609-4840&client=summon |