ATLAS flavour-tagging algorithms for the LHC Run 2 pp collision dataset

The flavour-tagging algorithms developed by the ATLAS Collaboration and used to analyse its dataset of s = 13  TeV pp collisions from Run 2 of the Large Hadron Collider are presented. These new tagging algorithms are based on recurrent and deep neural networks, and their performance is evaluated in...

Full description

Saved in:
Bibliographic Details
Published inEuropean Physical Journal C Vol. 83; no. 7; p. 681
Main Authors Abusleme Hoffman, A. C., Angerami, A., Armbruster, A. J., Assamagan, K., Balaji, S., Balek, P., Battulga, D., Bayirli, A., Berthold, A., Bielski, R., Bird, G. A., Bisanz, T., Booth, C. D., Borgna, L. S., Buzykaev, A. R., Caforio, D., Calvet, T. P., Castro, N. F., Cerri, A., Chargeishvili, B., Chu, X., Costanza, F., Cuhadar Donszelmann, T., Gao, J., García, C., Gasiorowski, S. J., Gazis, E. N., Grenier, P., Gubbels, C., Guo, L., Haug, S., Hawkes, C. M., Hays, J. M., Heinrich, J. J., Helsens, C., Huang, Z., Iconomidou-Fayard, L., Jacobs, R. M., Kabana, S., Kelsey, D., Kersten, S., Ketabchi Haghighat, S., Kopeliansky, R., Kramer, P., Levêque, J., Lindon, J. H., Lorenz, J., Love, P. A., Lozano Bahilo, J. J., Lu, Y. J., Meyer, C., Mikuž, M., Miller, D. W., Mitra, A., Miyagawa, P. S., Moreira De Carvalho, A. L., Moser, B., Nikiforou, N., Nisati, A., Norman, B. J., Olszowska, J., Orestano, D., Palestini, S., Panchal, D. K., Panizzo, G., Readioff, N. P., Rodriguez Bosca, S., Rodríguez Vera, A. M., Ruelas Rivera, V. H., Rühr, F., Sankey, D. P. C., Santos, H., Schenck, F., Sen, S., Shirabe, S., Sijacki, Dj, Skaf, A., Smiesko, J., Soffer, A., Stapf, B., Stark, J., Steentoft, J., Tassi, E., Thomas, D. W., Torres, H., Tuna, A. N., Ukegawa, F., Veneziano, S., Vickey, T., Von Ahnen, J., Vos, M., Vreeswijk, M., Wagner, W., Wang, A. Z., Wang, S., Winter, J. K., Xu, Z., Yang, H. T., Yeh, Y., Zhang, J.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 2023
Springer
Springer Nature B.V
Springer Verlag (Germany)
Springer Nature
Subjects
Online AccessGet full text
ISSN1434-6044
1434-6052
1431-5858
1434-6052
DOI10.1140/epjc/s10052-023-11699-1

Cover

More Information
Summary:The flavour-tagging algorithms developed by the ATLAS Collaboration and used to analyse its dataset of s = 13  TeV pp collisions from Run 2 of the Large Hadron Collider are presented. These new tagging algorithms are based on recurrent and deep neural networks, and their performance is evaluated in simulated collision events. These developments yield considerable improvements over previous jet-flavour identification strategies. At the 77% b -jet identification efficiency operating point, light-jet (charm-jet) rejection factors of 170 (5) are achieved in a sample of simulated Standard Model t t ¯ events; similarly, at a c -jet identification efficiency of 30%, a light-jet ( b -jet) rejection factor of 70 (9) is obtained.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
USDOE Office of Science (SC), High Energy Physics (HEP)
National Science Foundation (NSF)
AC02-05CH11231
None
ISSN:1434-6044
1434-6052
1431-5858
1434-6052
DOI:10.1140/epjc/s10052-023-11699-1