Predictors of treatment dropout in self-guided web-based interventions for depression: an ‘individual patient data’ meta-analysis

It is well known that web-based interventions can be effective treatments for depression. However, dropout rates in web-based interventions are typically high, especially in self-guided web-based interventions. Rigorous empirical evidence regarding factors influencing dropout in self-guided web-base...

Full description

Saved in:
Bibliographic Details
Published inPsychological medicine Vol. 45; no. 13; pp. 2717 - 2726
Main Authors Karyotaki, E., Kleiboer, A., Smit, F., Turner, D. T., Pastor, A. M., Andersson, G., Berger, T., Botella, C., Breton, J. M., Carlbring, P., Christensen, H., de Graaf, E., Griffiths, K., Donker, T., Farrer, L., Huibers, M. J. H., Lenndin, J., Mackinnon, A., Meyer, B., Moritz, S., Riper, H., Spek, V., Vernmark, K., Cuijpers, P.
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 01.10.2015
Subjects
Online AccessGet full text
ISSN0033-2917
1469-8978
1469-8978
DOI10.1017/S0033291715000665

Cover

More Information
Summary:It is well known that web-based interventions can be effective treatments for depression. However, dropout rates in web-based interventions are typically high, especially in self-guided web-based interventions. Rigorous empirical evidence regarding factors influencing dropout in self-guided web-based interventions is lacking due to small study sample sizes. In this paper we examined predictors of dropout in an individual patient data meta-analysis to gain a better understanding of who may benefit from these interventions. A comprehensive literature search for all randomized controlled trials (RCTs) of psychotherapy for adults with depression from 2006 to January 2013 was conducted. Next, we approached authors to collect the primary data of the selected studies. Predictors of dropout, such as socio-demographic, clinical, and intervention characteristics were examined. Data from 2705 participants across ten RCTs of self-guided web-based interventions for depression were analysed. The multivariate analysis indicated that male gender [relative risk (RR) 1.08], lower educational level (primary education, RR 1.26) and co-morbid anxiety symptoms (RR 1.18) significantly increased the risk of dropping out, while for every additional 4 years of age, the risk of dropping out significantly decreased (RR 0.94). Dropout can be predicted by several variables and is not randomly distributed. This knowledge may inform tailoring of online self-help interventions to prevent dropout in identified groups at risk.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ISSN:0033-2917
1469-8978
1469-8978
DOI:10.1017/S0033291715000665