Virtual Patients and Sensitivity Analysis of the Guyton Model of Blood Pressure Regulation: Towards Individualized Models of Whole-Body Physiology
Mathematical models that integrate multi-scale physiological data can offer insight into physiological and pathophysiological function, and may eventually assist in individualized predictive medicine. We present a methodology for performing systematic analyses of multi-parameter interactions in such...
Saved in:
Published in | PLoS computational biology Vol. 8; no. 6; p. e1002571 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
01.06.2012
PLOS Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
ISSN | 1553-7358 1553-734X 1553-7358 |
DOI | 10.1371/journal.pcbi.1002571 |
Cover
Summary: | Mathematical models that integrate multi-scale physiological data can offer insight into physiological and pathophysiological function, and may eventually assist in individualized predictive medicine. We present a methodology for performing systematic analyses of multi-parameter interactions in such complex, multi-scale models. Human physiology models are often based on or inspired by Arthur Guyton's whole-body circulatory regulation model. Despite the significance of this model, it has not been the subject of a systematic and comprehensive sensitivity study. Therefore, we use this model as a case study for our methodology. Our analysis of the Guyton model reveals how the multitude of model parameters combine to affect the model dynamics, and how interesting combinations of parameters may be identified. It also includes a "virtual population" from which "virtual individuals" can be chosen, on the basis of exhibiting conditions similar to those of a real-world patient. This lays the groundwork for using the Guyton model for in silico exploration of pathophysiological states and treatment strategies. The results presented here illustrate several potential uses for the entire dataset of sensitivity results and the "virtual individuals" that we have generated, which are included in the supplementary material. More generally, the presented methodology is applicable to modern, more complex multi-scale physiological models. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 PMCID: PMC3386164 Conceived and designed the experiments: RM TG FG SRT. Performed the experiments: RM TG SRT. Analyzed the data: RM TG SRT. Contributed reagents/materials/analysis tools: RM TG NL SRT. Wrote the paper: RM TG IM NL FG SRT. |
ISSN: | 1553-7358 1553-734X 1553-7358 |
DOI: | 10.1371/journal.pcbi.1002571 |