A Genetic algorithm aided hyper parameter optimization based ensemble model for respiratory disease prediction with Explainable AI

In the current era, a lot of research is being done in the domain of disease diagnosis using machine learning. In recent times, one of the deadliest respiratory diseases, COVID-19, which causes serious damage to the lungs has claimed a lot of lives globally. Machine learning-based systems can assist...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 19; no. 12; p. e0308015
Main Authors Kaur, Balraj Preet, Singh, Harpreet, Hans, Rahul, Sharma, Sanjeev Kumar, Sharma, Chetna, Hassan, Md. Mehedi
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 02.12.2024
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0308015

Cover

Abstract In the current era, a lot of research is being done in the domain of disease diagnosis using machine learning. In recent times, one of the deadliest respiratory diseases, COVID-19, which causes serious damage to the lungs has claimed a lot of lives globally. Machine learning-based systems can assist clinicians in the early diagnosis of the disease, which can reduce the deadly effects of the disease. For the successful deployment of these machine learning-based systems, hyperparameter-based optimization and feature selection are important issues. Motivated by the above, in this proposal, we design an improved model to predict the existence of respiratory disease among patients by incorporating hyperparameter optimization and feature selection. To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. Moreover, to enhance the efficacy of the predictions made by hyperparameter-optimized machine learning models, an ensemble model is proposed using a stacking classifier. Also, explainable AI was incorporated to define the feature importance by making use of Shapely adaptive explanations (SHAP) values. For the experimentation, the publicly accessible Mexico clinical dataset of COVID-19 was used. The results obtained show that the proposed model has superior prediction accuracy in comparison to its counterparts. Moreover, among all the hyperparameter-optimized algorithms, adaboost algorithm outperformed all the other hyperparameter-optimized algorithms. The various performance assessment metrics, including accuracy, precision, recall, AUC, and F1-score, were used to assess the results.
AbstractList In the current era, a lot of research is being done in the domain of disease diagnosis using machine learning. In recent times, one of the deadliest respiratory diseases, COVID-19, which causes serious damage to the lungs has claimed a lot of lives globally. Machine learning-based systems can assist clinicians in the early diagnosis of the disease, which can reduce the deadly effects of the disease. For the successful deployment of these machine learning-based systems, hyperparameter-based optimization and feature selection are important issues. Motivated by the above, in this proposal, we design an improved model to predict the existence of respiratory disease among patients by incorporating hyperparameter optimization and feature selection. To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. Moreover, to enhance the efficacy of the predictions made by hyperparameter-optimized machine learning models, an ensemble model is proposed using a stacking classifier. Also, explainable AI was incorporated to define the feature importance by making use of Shapely adaptive explanations (SHAP) values. For the experimentation, the publicly accessible Mexico clinical dataset of COVID-19 was used. The results obtained show that the proposed model has superior prediction accuracy in comparison to its counterparts. Moreover, among all the hyperparameter-optimized algorithms, adaboost algorithm outperformed all the other hyperparameter-optimized algorithms. The various performance assessment metrics, including accuracy, precision, recall, AUC, and F1-score, were used to assess the results.
In the current era, a lot of research is being done in the domain of disease diagnosis using machine learning. In recent times, one of the deadliest respiratory diseases, COVID-19, which causes serious damage to the lungs has claimed a lot of lives globally. Machine learning-based systems can assist clinicians in the early diagnosis of the disease, which can reduce the deadly effects of the disease. For the successful deployment of these machine learning-based systems, hyperparameter-based optimization and feature selection are important issues. Motivated by the above, in this proposal, we design an improved model to predict the existence of respiratory disease among patients by incorporating hyperparameter optimization and feature selection. To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. Moreover, to enhance the efficacy of the predictions made by hyperparameter-optimized machine learning models, an ensemble model is proposed using a stacking classifier. Also, explainable AI was incorporated to define the feature importance by making use of Shapely adaptive explanations (SHAP) values. For the experimentation, the publicly accessible Mexico clinical dataset of COVID-19 was used. The results obtained show that the proposed model has superior prediction accuracy in comparison to its counterparts. Moreover, among all the hyperparameter-optimized algorithms, adaboost algorithm outperformed all the other hyperparameter-optimized algorithms. The various performance assessment metrics, including accuracy, precision, recall, AUC, and F1-score, were used to assess the results.In the current era, a lot of research is being done in the domain of disease diagnosis using machine learning. In recent times, one of the deadliest respiratory diseases, COVID-19, which causes serious damage to the lungs has claimed a lot of lives globally. Machine learning-based systems can assist clinicians in the early diagnosis of the disease, which can reduce the deadly effects of the disease. For the successful deployment of these machine learning-based systems, hyperparameter-based optimization and feature selection are important issues. Motivated by the above, in this proposal, we design an improved model to predict the existence of respiratory disease among patients by incorporating hyperparameter optimization and feature selection. To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. Moreover, to enhance the efficacy of the predictions made by hyperparameter-optimized machine learning models, an ensemble model is proposed using a stacking classifier. Also, explainable AI was incorporated to define the feature importance by making use of Shapely adaptive explanations (SHAP) values. For the experimentation, the publicly accessible Mexico clinical dataset of COVID-19 was used. The results obtained show that the proposed model has superior prediction accuracy in comparison to its counterparts. Moreover, among all the hyperparameter-optimized algorithms, adaboost algorithm outperformed all the other hyperparameter-optimized algorithms. The various performance assessment metrics, including accuracy, precision, recall, AUC, and F1-score, were used to assess the results.
Audience Academic
Author Sharma, Chetna
Hassan, Md. Mehedi
Hans, Rahul
Kaur, Balraj Preet
Singh, Harpreet
Sharma, Sanjeev Kumar
AuthorAffiliation 3 Department of Computer Science and Applications, DAV University, Jalandhar, Punjab, India
University of Electronic Science and Technology of China, CHINA
2 Department of Computer Science and Engineering, Thapar Institute of Engineering and Technology, Patiala, India
1 Department of Computer Science and Engineering, DAV University, Jalandhar, Punjab, India
5 Computer Science and Engineering Discipline, Khulna University, Khulna, Bangladesh
4 Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India
AuthorAffiliation_xml – name: 1 Department of Computer Science and Engineering, DAV University, Jalandhar, Punjab, India
– name: 2 Department of Computer Science and Engineering, Thapar Institute of Engineering and Technology, Patiala, India
– name: 5 Computer Science and Engineering Discipline, Khulna University, Khulna, Bangladesh
– name: 3 Department of Computer Science and Applications, DAV University, Jalandhar, Punjab, India
– name: 4 Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India
– name: University of Electronic Science and Technology of China, CHINA
Author_xml – sequence: 1
  givenname: Balraj Preet
  surname: Kaur
  fullname: Kaur, Balraj Preet
– sequence: 2
  givenname: Harpreet
  orcidid: 0000-0001-5938-7252
  surname: Singh
  fullname: Singh, Harpreet
– sequence: 3
  givenname: Rahul
  surname: Hans
  fullname: Hans, Rahul
– sequence: 4
  givenname: Sanjeev Kumar
  surname: Sharma
  fullname: Sharma, Sanjeev Kumar
– sequence: 5
  givenname: Chetna
  surname: Sharma
  fullname: Sharma, Chetna
– sequence: 6
  givenname: Md. Mehedi
  orcidid: 0000-0002-9890-0968
  surname: Hassan
  fullname: Hassan, Md. Mehedi
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39621641$$D View this record in MEDLINE/PubMed
BookMark eNqNk1tvnDAQhVGVqrm0_6BqkSpV7cNubQwG-lKtojRdKVKk3l6tAYZdRwZT2zTZPvaX1-ySaImiKvAAMt85njmDj4ODVrcYBC8pmVOW0g9XujctqHnnl-eEkYzQ5ElwRHMWzXhE2MHe-2FwbO0VIQnLOH8WHLKcR5TH9Cj4uwjPsUUnyxDUShvp1k0IssIqXG86NGEHBhp0_k13TjbyDzip27AA6xFsLTaFwrDRFaqw1iY0aDtpwGmzCStp0XNhZ7CS5VZ37TcIz246BbKFQblYPg-e1qAsvhifJ8GPz2ffT7_MLi7Pl6eLi1nJc-ZmJc2iOCEIrM7iPE-RpCWnaR35VnKoi4REWNd1BjxmeQYF50mMSVwTyKuK5Sk7CV7vfDulrRjjs4JRlpAkpXnkieWOqDRcic7IBsxGaJBiu6DNSoDxUSkUHEke5TEtfMax37CIEKqCZENFWVqA90p2Xn3bweYalLozpEQME7wtQQwTFOMEve7TWGVfNFiV2DoDalLM9Esr12KlfwtKOfUX9w7vRgejf_VonWikLVEpaFH3Q8Oxrz3K0gF9cw99OJaRWoHvXLa19huXg6lYZDTjGY3iId75A5S_K2xk6VuspV-fCN5PBJ5xeONW0Fsrlt--Pp69_Dll3-6xawTl1larfvj_7BR8tR_1Xca3p8MD8Q4ojbbWYP3YEX68Jyul2x4bn4hU_xf_A_djOCI
CitedBy_id crossref_primary_10_1007_s12033_025_01385_w
Cites_doi 10.3390/jimaging9010001
10.3390/diagnostics12061396
10.21203/rs.2.14454/v1
10.1038/s41598-021-90827-x
10.1109/ACCESS.2021.3116067
10.3390/s18103532
10.1080/10408363.2020.1783198
10.1016/j.cie.2021.107912
10.3390/diagnostics12051023
10.1002/widm.1249
10.1016/j.dajour.2024.100460
10.1177/1932296820924469
10.1007/s41870-021-00671-5
10.30534/ijeter/2020/55862020
10.1109/ICECOCS50124.2020.9314373
10.1016/j.mlwa.2022.100251
10.1038/s41598-021-90265-9
10.15837/ijccc.2019.2.3514
10.2147/JMDH.S322431
10.1016/B978-0-12-815739-8.00006-7
10.1038/s41598-021-88807-2
10.1016/j.coi.2021.07.003
10.1007/s10489-020-01997-6
10.1016/j.smhl.2020.100178
10.1016/j.bbe.2021.05.013
10.1016/j.neucom.2020.07.061
10.1016/j.neucom.2015.06.083
10.1016/j.compbiomed.2022.105405
10.1016/j.imu.2020.100449
10.1088/1742-6596/1192/1/012021
10.1186/s12911-019-1004-8
10.1016/j.knosys.2020.105746
10.1109/R10-HTC49770.2020.9356984
10.2166/ws.2018.059
10.1111/tmi.13383
10.1038/s41598-022-06218-3
10.1007/s42979-020-00394-7
10.1016/j.compbiomed.2021.104356
10.1016/j.imu.2022.100941
ContentType Journal Article
Copyright Copyright: © 2024 Kaur et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
COPYRIGHT 2024 Public Library of Science
2024 Kaur et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 Kaur et al 2024 Kaur et al
2024 Kaur et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright: © 2024 Kaur et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
– notice: COPYRIGHT 2024 Public Library of Science
– notice: 2024 Kaur et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 Kaur et al 2024 Kaur et al
– notice: 2024 Kaur et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
COVID
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1371/journal.pone.0308015
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Science in Context
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection (LUT)
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
Coronavirus Research Database
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database (Proquest)
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
Health & Medical Collection (Alumni Edition)
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database (Proquest)
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
Coronavirus Research Database
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

CrossRef
MEDLINE

Agricultural Science Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Respiratory disease prediction with explainable AI
EISSN 1932-6203
ExternalDocumentID 3135057192
oai_doaj_org_article_6e092941b1934439b2eadb08617f87ba
10.1371/journal.pone.0308015
PMC11611116
A818681247
39621641
10_1371_journal_pone_0308015
Genre Journal Article
GeographicLocations Mexico
India
GeographicLocations_xml – name: Mexico
– name: India
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESTFP
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ADRAZ
ALIPV
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
BBORY
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
COVID
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c693t-c182450ea3f84997e07c617f26219afb502efff8a64398ab6654e54f0a9dd3973
IEDL.DBID M48
ISSN 1932-6203
IngestDate Wed Aug 13 01:19:53 EDT 2025
Fri Oct 03 12:52:53 EDT 2025
Sun Oct 26 03:13:11 EDT 2025
Tue Sep 30 17:06:47 EDT 2025
Mon Sep 08 15:05:43 EDT 2025
Tue Oct 07 07:28:53 EDT 2025
Mon Oct 20 22:42:25 EDT 2025
Mon Oct 20 16:57:25 EDT 2025
Thu Oct 16 15:40:32 EDT 2025
Thu Oct 16 15:40:08 EDT 2025
Thu May 22 21:23:28 EDT 2025
Mon Jul 21 06:01:24 EDT 2025
Wed Oct 01 03:35:35 EDT 2025
Thu Apr 24 22:53:20 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License Copyright: © 2024 Kaur et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
cc-by
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c693t-c182450ea3f84997e07c617f26219afb502efff8a64398ab6654e54f0a9dd3973
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors declare no conflict of interest.
ORCID 0000-0001-5938-7252
0000-0002-9890-0968
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0308015
PMID 39621641
PQID 3135057192
PQPubID 1436336
PageCount e0308015
ParticipantIDs plos_journals_3135057192
doaj_primary_oai_doaj_org_article_6e092941b1934439b2eadb08617f87ba
unpaywall_primary_10_1371_journal_pone_0308015
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11611116
proquest_miscellaneous_3140922876
proquest_journals_3135057192
gale_infotracmisc_A818681247
gale_infotracacademiconefile_A818681247
gale_incontextgauss_ISR_A818681247
gale_incontextgauss_IOV_A818681247
gale_healthsolutions_A818681247
pubmed_primary_39621641
crossref_primary_10_1371_journal_pone_0308015
crossref_citationtrail_10_1371_journal_pone_0308015
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-02
PublicationDateYYYYMMDD 2024-12-02
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-02
  day: 02
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2024
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References E. Sevinç (pone.0308015.ref007) 2022; vol. 165
Fatma Hilal Yagin (pone.0308015.ref031) 2023; 154
M. AlJame (pone.0308015.ref043) 2020; vol. 21
F. Ernawan (pone.0308015.ref004) 2022; vol. 13
Fatih Ozyurt (pone.0308015.ref027) 2021; 132
K. Debjit (pone.0308015.ref019) 2022; vol. 12
D. McCoy (pone.0308015.ref042) 2021; vol. 11
A. T. Imam (pone.0308015.ref053) 2021; vol. 12
Y. Alali (pone.0308015.ref017) 2022; vol. 12
N. Rai (pone.0308015.ref055) 2022; vol. 3
K. Chadaga (pone.0308015.ref063) 2021; 16
Mehrdad Rostami (pone.0308015.ref026) 2022; 30
Yasser A. Ali (pone.0308015.ref058) 2023; 11
S. Uddin (pone.0308015.ref003) 2019; vol. 19
S. H. Kassania (pone.0308015.ref037) 2021; vol. 41
T. K. An (pone.0308015.ref008) 2010; vol. 1
A. Zargari Khuzani (pone.0308015.ref011) 2021; vol. 11
L. K. Shrivastav (pone.0308015.ref045) 2021; vol. 51
L. J. Muhammad (pone.0308015.ref005) 2021; 2
L. Yang (pone.0308015.ref018) 2020; vol. 415
Károly Héberger (pone.0308015.ref033) 2024; 17
M. A. Haqmi Abas (pone.0308015.ref057) 2020; vol. 8
pone.0308015.ref022
D. Ndwandwe (pone.0308015.ref041) 2021; vol. 71
T. P. Velavan (pone.0308015.ref016) 2020; vol. 25
Matteo Chieregato (pone.0308015.ref059) 2022; 12
A. Becerra-Sánchez (pone.0308015.ref064) 2022; 12
X. Han (pone.0308015.ref061) 2022; 9
M. Pourhomayoun (pone.0308015.ref024) 2021; vol. 20
M. Ciotti (pone.0308015.ref015) 2020; vol. 0
Susmita Hamal (pone.0308015.ref032) 2024; 11
S. Mohana Saranya (pone.0308015.ref021) 2021; vol. 12
pone.0308015.ref054
R. Sreedharan (pone.0308015.ref012) 2020; vol. 2240
X. Xia (pone.0308015.ref048) 2019; vol. 19
Rishav Pramanik (pone.0308015.ref030) 2022; 128
N. K. Chowdhury (pone.0308015.ref010) 2022; vol. 145
E. Emary (pone.0308015.ref014) 2016; vol. 172
A. C. Florea (pone.0308015.ref056) 2019; vol. 14
Yibai Xiong (pone.0308015.ref051) 2022; 11
O. Sagi (pone.0308015.ref040) 2018; vol. 8
pone.0308015.ref052
P. Hu (pone.0308015.ref013) 2020; vol. 195
M. Adimoolam (pone.0308015.ref038) 2022; vol. 39
O. O. Abayomi-Alli (pone.0308015.ref039) 2022; vol. 22
pone.0308015.ref050
Ajay Sharma (pone.0308015.ref006) 2022; 14
S. A. F. Sayed (pone.0308015.ref009) 2021; vol. 9
B. Bode (pone.0308015.ref062) 2020; 14
M. Kukar (pone.0308015.ref036) 2021; 11
N. Mansbridge (pone.0308015.ref002) 2018; vol. 18
K. C. Dewi (pone.0308015.ref034) 2019; vol. 1192
El Sayed M. El-Kenawy (pone.0308015.ref029) 2020; 8
pone.0308015.ref001
Soham Chattopadhyay (pone.0308015.ref028) 2021; 11
pone.0308015.ref044
pone.0308015.ref049
Omneya Attallah (pone.0308015.ref025) 2022; 12
A. F. de Moraes Batista (pone.0308015.ref035) 2020
pone.0308015.ref047
pone.0308015.ref046
M. Shahhosseini (pone.0308015.ref020) 2022; vol. 7
Abdulrhman Fahad Aljouie (pone.0308015.ref023) 2021; 14
L. J. Muhammad (pone.0308015.ref060) 2021; 2
References_xml – ident: pone.0308015.ref001
– volume: vol. 3
  start-page: 172
  issue: no. June
  year: 2022
  ident: pone.0308015.ref055
  article-title: Mortality prediction of COVID-19 patients using soft voting classifier
  publication-title: Int. J. Cogn. Comput. Eng.
– volume: 11
  issue: 2
  year: 2023
  ident: pone.0308015.ref058
  article-title: Hyperparameter Search for Machine Learning Algorithms for Optimizing the Computational Complexity
  publication-title: Processes
– volume: 154
  issue: November 2022
  year: 2023
  ident: pone.0308015.ref031
  article-title: Explainable Artificial Intelligence Model for Identifying COVID-19 Gene Biomarkers
  publication-title: Computers in Biology and Medicine
– volume: 9
  start-page: 1
  issue: 1
  year: 2022
  ident: pone.0308015.ref061
  article-title: A survey on deep learning in COVID-19 diagnosis
  publication-title: Journal of imaging
  doi: 10.3390/jimaging9010001
– volume: 12
  start-page: 1396
  issue: 6
  year: 2022
  ident: pone.0308015.ref064
  article-title: Mortality analysis of patients with COVID-19 in Mexico based on risk factors applying machine learning techniques
  publication-title: Diagnostics
  doi: 10.3390/diagnostics12061396
– volume: vol. 13
  start-page: 514
  issue: no. 8
  year: 2022
  ident: pone.0308015.ref004
  article-title: Light Gradient Boosting with Hyper Parameter Tuning Optimization for COVID-19 Prediction
  publication-title: Int. J. Adv. Comput. Sci. Appl.
– ident: pone.0308015.ref044
  doi: 10.21203/rs.2.14454/v1
– ident: pone.0308015.ref047
– volume: vol. 11
  start-page: 1
  issue: no. 1
  year: 2021
  ident: pone.0308015.ref042
  article-title: Ensemble machine learning of factors influencing COVID-19 across US counties
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-90827-x
– volume: vol. 9
  start-page: 135697
  year: 2021
  ident: pone.0308015.ref009
  article-title: Applying Different Machine Learning Techniques for Prediction of COVID-19 Severity
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3116067
– volume: vol. 18
  start-page: 1
  issue: no. 10
  year: 2018
  ident: pone.0308015.ref002
  article-title: Feature selection and comparison of machine learning algorithms in classification of grazing and rumination behaviour in sheep
  publication-title: Sensors (Switzerland)
  doi: 10.3390/s18103532
– volume: vol. 0
  start-page: 365
  issue: no. 0
  year: 2020
  ident: pone.0308015.ref015
  article-title: The COVID-19 pandemic
  publication-title: Crit. Rev. Clin. Lab. Sci.
  doi: 10.1080/10408363.2020.1783198
– volume: vol. 165
  start-page: 107912
  issue: no. December
  year: 2022
  ident: pone.0308015.ref007
  article-title: An empowered AdaBoost algorithm implementation. A COVID-19 dataset study
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2021.107912
– volume: vol. 12
  issue: no. 5
  year: 2022
  ident: pone.0308015.ref019
  article-title: An Improved Machine-Learning Approach for COVID-19 Prediction Using Harris Hawks Optimization and Feature Analysis Using SHAP
  publication-title: Diagnostics
  doi: 10.3390/diagnostics12051023
– volume: vol. 8
  start-page: 1
  issue: no. 4
  year: 2018
  ident: pone.0308015.ref040
  article-title: Ensemble learning. A survey
  publication-title: Wiley Interdiscip. Rev. Data Min. Knowl. Discov.
  doi: 10.1002/widm.1249
– volume: 11
  start-page: 100460
  issue: June 2023
  year: 2024
  ident: pone.0308015.ref032
  article-title: A Comparative Analysis of Machine Learning Algorithms for Detecting COVID-19 Using Lung X-Ray Images
  publication-title: Decision Analytics Journal
  doi: 10.1016/j.dajour.2024.100460
– ident: pone.0308015.ref052
– volume: 8
  year: 2020
  ident: pone.0308015.ref029
  article-title: Novel Feature Selection and Voting Classifier Algorithms for COVID-19 Classification in CT Images
  publication-title: IEEE Access
– volume: vol. 12
  start-page: 174
  issue: no. 3
  year: 2021
  ident: pone.0308015.ref053
  article-title: SVM Machine Learning Classifier to Automate the Extraction of SRS Elements
  publication-title: Int. J. Adv. Comput. Sci. Appl.
– volume: 14
  start-page: 813
  issue: 4
  year: 2020
  ident: pone.0308015.ref062
  article-title: Glycemic characteristics and clinical outcomes of COVID-19 patients hospitalized in the United States
  publication-title: Journal of diabetes science and technology
  doi: 10.1177/1932296820924469
– volume: 14
  start-page: 1949
  issue: 4
  year: 2022
  ident: pone.0308015.ref006
  article-title: Performance Analysis of Machine Learning Based Optimized Feature Selection Approaches for Breast Cancer Diagnosis
  publication-title: International Journal of Information Technology (Singapore)
  doi: 10.1007/s41870-021-00671-5
– volume: vol. 8
  start-page: 2551
  issue: no. 6
  year: 2020
  ident: pone.0308015.ref057
  article-title: Agarwood Oil Quality Classification using Support Vector Classifier and Grid Search Cross Validation Hyperparameter Tuning
  publication-title: Int. J. Emerg. Trends Eng. Res.
  doi: 10.30534/ijeter/2020/55862020
– volume: 11
  start-page: 1
  issue: 1
  year: 2022
  ident: pone.0308015.ref051
  article-title: Comparing Different Machine Learning Techniques for Predicting COVID-19 Severity
  publication-title: Infectious Diseases of Poverty
– volume: vol. 39
  issue: no. 4
  year: 2022
  ident: pone.0308015.ref038
  article-title: A hybrid learning approach for the stage-wise classification and prediction of COVID-19 X-ray images
  publication-title: Expert Syst.
– ident: pone.0308015.ref022
  doi: 10.1109/ICECOCS50124.2020.9314373
– volume: vol. 7
  start-page: 100251
  issue: no. December
  year: 2022
  ident: pone.0308015.ref020
  article-title: Optimizing ensemble weights and hyperparameters of machine learning models for regression problems
  publication-title: Mach. Learn. with Appl.
  doi: 10.1016/j.mlwa.2022.100251
– volume: 11
  start-page: 10738
  year: 2021
  ident: pone.0308015.ref036
  article-title: COVID-19 diagnosis by routine blood tests using machine learning
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-90265-9
– volume: vol. 14
  start-page: 154
  issue: no. 2
  year: 2019
  ident: pone.0308015.ref056
  article-title: Weighted Random Search for hyperparameter optimization
  publication-title: Int. J. Comput. Commun. Control
  doi: 10.15837/ijccc.2019.2.3514
– volume: 14
  start-page: 2017
  year: 2021
  ident: pone.0308015.ref023
  article-title: Early Prediction of COVID-19 Ventilation Requirement and Mortality from Routinely Collected Baseline Chest Radiographs, Laboratory, and Clinical Data with Machine Learning
  publication-title: Journal of Multidisciplinary Healthcare
  doi: 10.2147/JMDH.S322431
– ident: pone.0308015.ref054
  doi: 10.1016/B978-0-12-815739-8.00006-7
– volume: vol. 11
  start-page: 1
  issue: no. 1
  year: 2021
  ident: pone.0308015.ref011
  article-title: COVID-Classifier. an automated machine learning model to assist in the diagnosis of COVID-19 infection in chest X-ray images
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-88807-2
– ident: pone.0308015.ref049
– volume: vol. 71
  start-page: 111
  issue: no. 1
  year: 2021
  ident: pone.0308015.ref041
  article-title: COVID-19 vaccines
  publication-title: Curr. Opin. Immunol.
  doi: 10.1016/j.coi.2021.07.003
– year: 2020
  ident: pone.0308015.ref035
  article-title: COVID-19 diagnosis prediction in emergency care patients. a machine learning approach
  publication-title: MedRxiv
– volume: vol. 51
  start-page: 2727
  issue: no. 5
  year: 2021
  ident: pone.0308015.ref045
  article-title: A gradient boosting machine learning approach in modeling the impact of temperature and humidity on the transmission rate of COVID-19 in India
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-020-01997-6
– volume: vol. 2240
  start-page: 15
  issue: no. Ml
  year: 2020
  ident: pone.0308015.ref012
  article-title: Analysis and prediction of smart data using machine learning
  publication-title: AIP Conf. Proc.
– volume: vol. 20
  start-page: 100178
  issue: no. April
  year: 2021
  ident: pone.0308015.ref024
  article-title: Predicting mortality risk in patients with COVID-19 using machine learning to help medical decision-making
  publication-title: Smart Heal.
  doi: 10.1016/j.smhl.2020.100178
– volume: vol. 41
  start-page: 867
  issue: no. 3
  year: 2021
  ident: pone.0308015.ref037
  article-title: Automatic Detection of Coronavirus Disease (COVID-19) in X-ray and CT Images. A Machine Learning Based Approach
  publication-title: Biocybern. Biomed. Eng.
  doi: 10.1016/j.bbe.2021.05.013
– volume: vol. 415
  start-page: 295
  year: 2020
  ident: pone.0308015.ref018
  article-title: On hyperparameter optimization of machine learning algorithms. Theory and practice
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.07.061
– volume: vol. 172
  start-page: 371
  year: 2016
  ident: pone.0308015.ref014
  article-title: Binary grey wolf optimization approaches for feature selection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.06.083
– volume: vol. 22
  issue: no. 6
  year: 2022
  ident: pone.0308015.ref039
  article-title: An Ensemble Learning Model for COVID-19 Detection from Blood Test Samples
  publication-title: Sensors
– volume: 16
  start-page: 221
  issue: 10
  year: 2021
  ident: pone.0308015.ref063
  article-title: COVID-19 mortality prediction among patients using epidemiological parameters: an ensemble machine learning approach
  publication-title: Engineered Science
– volume: vol. 145
  start-page: 105405
  issue: no. November
  year: 2022
  ident: pone.0308015.ref010
  article-title: Machine learning for detecting COVID-19 from cough sounds. An ensemble-based MCDM method
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2022.105405
– volume: 12
  start-page: 1
  issue: 1
  year: 2022
  ident: pone.0308015.ref059
  article-title: A Hybrid Machine Learning/Deep Learning COVID-19 Severity Predictive Model from CT Images and Clinical Data
  publication-title: Scientific Reports
– volume: vol. 21
  start-page: 100449
  year: 2020
  ident: pone.0308015.ref043
  article-title: Ensemble learning model for diagnosing COVID-19 from routine blood tests
  publication-title: Informatics Med. Unlocked
  doi: 10.1016/j.imu.2020.100449
– volume: vol. 1192
  start-page: 012021
  issue: No. 1
  year: 2019
  ident: pone.0308015.ref034
  article-title: Ensemble learning for predicting mortality rates affected by air quality
  publication-title: In Journal of physics. Conference series
  doi: 10.1088/1742-6596/1192/1/012021
– volume: vol. 19
  start-page: 1
  issue: no. 1
  year: 2019
  ident: pone.0308015.ref003
  article-title: Comparing different supervised machine learning algorithms for disease prediction
  publication-title: BMC Med. Inform. Decis. Mak.
  doi: 10.1186/s12911-019-1004-8
– volume: vol. 1
  start-page: 359
  year: 2010
  ident: pone.0308015.ref008
  article-title: A new Diverse AdaBoost classifier
  publication-title: Proc.—Int. Conf. Artif. Intell. Comput. Intell. AICI
– volume: 17
  issue: 1
  year: 2024
  ident: pone.0308015.ref033
  article-title: Frequent Errors in Modeling by Machine Learning. A Prototype Case of Predicting the Timely Evolution of COVID-19 Pandemic
  publication-title: Algorithms
– volume: vol. 12
  start-page: 448
  issue: no. 9
  year: 2021
  ident: pone.0308015.ref021
  article-title: Prediction of Covid-19 Using Hyperparameter Optimized Convolutional Neural Network
  publication-title: Turkish J. Comput. Math. Educ.
– volume: vol. 195
  start-page: 105746
  issue: no. xxxx
  year: 2020
  ident: pone.0308015.ref013
  article-title: Improved Binary Grey Wolf Optimizer and Its application for feature selection
  publication-title: Knowledge-Based Syst.
  doi: 10.1016/j.knosys.2020.105746
– volume: 12
  issue: 5
  year: 2022
  ident: pone.0308015.ref025
  article-title: An Intelligent ECG-Based Tool for Diagnosing COVID-19 via Ensemble Deep Learning Techniques
  publication-title: Biosensors
– volume: 128
  start-page: 1
  year: 2022
  ident: pone.0308015.ref030
  article-title: An Adaptive and Altruistic PSO-Based Deep Feature Selection Method for Pneumonia Detection from Chest X-Rays
  publication-title: Applied Soft Computing
– ident: pone.0308015.ref046
– ident: pone.0308015.ref050
  doi: 10.1109/R10-HTC49770.2020.9356984
– volume: vol. 19
  start-page: 137
  issue: no. 1
  year: 2019
  ident: pone.0308015.ref048
  article-title: Genetic algorithm hyper-parameter optimization using taguchi design for groundwater pollution source identification
  publication-title: Water Sci. Technol. Water Supply
  doi: 10.2166/ws.2018.059
– volume: vol. 25
  start-page: 278
  issue: no. 3
  year: 2020
  ident: pone.0308015.ref016
  article-title: The COVID-19 epidemic
  publication-title: Trop. Med. Int. Heal.
  doi: 10.1111/tmi.13383
– volume: vol. 12
  start-page: 1
  issue: no. 1
  year: 2022
  ident: pone.0308015.ref017
  article-title: A proficient approach to forecast COVID-19 spread via optimized dynamic machine learning models
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-06218-3
– volume: 11
  start-page: 1
  issue: 2
  year: 2021
  ident: pone.0308015.ref028
  article-title: Covid-19 Detection by Optimizing Deep Residual Features with Improved Clustering-Based Golden Ratio Optimizer
  publication-title: Diagnostics
– volume: 2
  start-page: 1
  issue: 1
  year: 2021
  ident: pone.0308015.ref005
  article-title: Supervised Machine Learning Models for Prediction of COVID-19 Infection Using Epidemiology Dataset
  publication-title: SN Computer Science
  doi: 10.1007/s42979-020-00394-7
– volume: 132
  start-page: 104356
  issue: March
  year: 2021
  ident: pone.0308015.ref027
  article-title: An Automated COVID-19 Detection Based on Fused Dynamic Exemplar Pyramid Feature Extraction and Hybrid Feature Selection Using Deep Learning
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2021.104356
– volume: 30
  start-page: 100941
  issue: January
  year: 2022
  ident: pone.0308015.ref026
  article-title: A Novel Explainable COVID-19 Diagnosis Method by Integration of Feature Selection with Random Forest
  publication-title: Informatics in Medicine Unlocked
  doi: 10.1016/j.imu.2022.100941
– volume: 2
  start-page: 1
  issue: 1
  year: 2021
  ident: pone.0308015.ref060
  article-title: Supervised machine learning models for prediction of COVID-19 infection using epidemiology dataset
  publication-title: SN computer science
  doi: 10.1007/s42979-020-00394-7
SSID ssj0053866
Score 2.4937887
Snippet In the current era, a lot of research is being done in the domain of disease diagnosis using machine learning. In recent times, one of the deadliest...
SourceID plos
doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0308015
SubjectTerms Accuracy
Algorithms
Analysis
Artificial intelligence
Biology and Life Sciences
Care and treatment
Computer and Information Sciences
COVID-19
COVID-19 - diagnosis
COVID-19 - virology
Design optimization
Diagnosis
Evaluation
Explainable artificial intelligence
Genetic algorithms
Humans
Learning algorithms
Lung diseases
Machine Learning
Mathematical optimization
Medicine and Health Sciences
Mexico
Mortality
Pandemics
Parameters
Performance assessment
Physical Sciences
Predictions
Research and Analysis Methods
Respiratory diseases
Respiratory tract diseases
SARS-CoV-2 - isolation & purification
Social Sciences
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQXuCCKK-mFDAICThkm4cTJ8cFUbVIgAQU9RbZsd2tlE2iZFeIK7-cGccbNqJSe2Bvu55E8sx4_M165jMhr2KeCZ4o6SvNtM90YPw8UbmvFEsAy7FE26awT5_TkzP28Tw537nqC2vCBnrgQXFHqQ5gB2ehBKTBYPeUEcxdAhAPucm4tNAoyPJtMjXEYFjFaeoa5WIeHjm7zNum1nNkaAnwGtydjcjy9Y9RedZWTX8V5Py3cvL2pm7Fr5-iqna2peN75K7Dk3QxzGOP3NL1fbLnVmxP3zha6bcPyO8FxS8gR0V10XSX6-WKIkGkoktIRjuKLOArrI6hDcSRlWvQpLjPKQrZrl7JSlN7dQ4FqEu7v6f01J3z0LbDgx_7HP7DS7HEz_Vn0cXpQ3J2_OH7-xPf3cDgl2ker_0Ssg-WBFrEJoPUiOuAl6j4KIVAJ4xMgkgbYzKBuCYTEq8y1gkzgciVAqQTPyKzGnS-T6gSkjMlMpMZyPhKIcNQpzLUgYSIU5ahR-KtOYrS0ZPjLRlVYc_cOKQpg0YLNGLhjOgRf3yqHeg5rpF_h5YeZZFc2_4ALlc4lyuuczmPPEc_KYZO1TFEFAtkB0TAxD3y0kogwUaNFTwXYtP3xemXHzcQ-vZ1IvTaCZkG1FEK1zUBc0Lironk4UQSwkQ5Gd5Hr95qpS_iMMbkFBA-PLn19KuHX4zD-FKsyqt1s0EZBpqCnDv1yONhYYyajXPwkZSBXbPJkpmofjpSXy4tv3kIWQh84KXzcXXdyLoH_8O6T8idCICrLVmKDsls3W30UwCea_nMxpg_kH6C8Q
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbK9gAXRHk1UMAgJOCQbR7O64DQFrVqkVhQoai3yI7tXaRsErK7Qlz55cx4nbQRFXRvWU8iecYz-Sb2fEPIyzBJeRJJ4UrFlMuUp90skpkrJYsAy7FImaKwj9P4-Ix9OI_Ot8i0q4XBY5VdTDSBWtYFfiPfD_0QsTQAknfNDxe7RuHuatdCg9vWCvKtoRi7QbYDZMYake2Dw-nn0y42g3fHsS2gCxN_39pr3NSVGiNzi4ftcS-9oAyPfx-tR01ZL6-Con-fqLy5rhr-6ycvy0uvq6M75LbFmXSyWRg7ZEtVd8mO9eQlfW3ppt_cI78nFC9AjvJyBlNezRcUiSMlnUOS2lJkB1_gqRlaQ3xZ2MJNiu8_SSELVgtRKmpa6lCAwLS92L2ndv-HNi1uCJn78MsvxaN_tm6LTk7uk7Ojw6_vj13bmcEt4ixcuQVkJSzyFA91CilTorykACikgxgCINci8gKltU454p2UC2xxrCKmPZ5JCQgofEBGFeh8l1DJRcIkT3WqIRMsuPB9FQtfeQIiUVH4Dgk7c-SFpS3H7hllbvbiEkhfNhrN0Yi5NaJD3P6uZkPb8R_5A7R0L4uk2-aPup3l1ofzWHkAJpkvAPQymJgIwA0F5IQw8zQR3CHPcJ3kmwrWPnTkE2QNRCCVOOSFkUDijQpP9sz4ernMTz59u4bQl9OB0CsrpGtQR8FtNQXMCQm9BpJ7A0kIH8VgeBdXdaeVZX7haHBnt9KvHn7eD-ND8bRepeo1yjDQFOTisUMebhyj12yYwRqJGdg1HbjMQPXDker73PCe-5CdwA8eOu6961rWffTviTwmtwKAquaQUrBHRqt2rZ4A1FyJpzZ-_AGz24GI
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELem7gFegPG1wgCDkACJlHw4X48BMW1IGwgoGk-RHdvrRJpETSIEj_zl3CVuWGCI0rfW50g--y6_6939TMhjL4x46EthScWUxZStrdiXsSUl8wHLMV91TWFHx8HBnL058U-2yPN1L8z5_L0XOi-MRmdVWagZcqvY2FG-HfiAvCdke378LvncJ45dK3Btz3TH_W3q6O3TkfQPrnhS5WV9Ec78s1zyUltU_NtXnufn3kX7V8nRehV9CcqXWduIWfb9N4LHTZd5jVwxoJQm_SnaIVuquE52jNnX9Knhpn52g_xIKH4BOcrz03J11iyWFFkmJV1ARLuiSCW-xBIbWoIzWpouT4ovS0khZFZLkSva3b9DAS_T1a9UPzXJIlqtMHvUzcO_iSnWCZomL5oc3iTz_dcfXx1Y5hoHKwtir7EyCGGYbyvu6Qjiq1DZYQa4SbsBeEuuhW-7SmsdcQRHERd4H7LymbZ5LCXAJe8WmRSgl11CJRchkzzSkYawMePCcVQgHGULcFtZ5kyJt97eNDMc53jVRp52ibsQYp1eoykqOjWKnhJrmFX1HB__kH-JJ2eQRYbu7gfY0dQYfBooG5AncwQcTQYLEy7YrIAAElYehYJPyQM8d2nf7jr4mTRBikFEXeGUPOokkKWjwDKgU97WdXr49tMGQh_ej4SeGCFdgjoyblovYE3I_jWS3BtJgq_JRsO7aCVrrdSp53gY4UKYADPXlnPx8MNhGB-KpX2FKluUYaApCNyDKbndG9qgWS-GMxIw2NdoZIIj1Y9HirNFR5LuQCgDH3jobLDWjXb3zv9OuEsuu4B0uxond49MmlWr7gFSbcR946B-AmFck_M
  priority: 102
  providerName: Unpaywall
Title A Genetic algorithm aided hyper parameter optimization based ensemble model for respiratory disease prediction with Explainable AI
URI https://www.ncbi.nlm.nih.gov/pubmed/39621641
https://www.proquest.com/docview/3135057192
https://www.proquest.com/docview/3140922876
https://pubmed.ncbi.nlm.nih.gov/PMC11611116
https://doi.org/10.1371/journal.pone.0308015
https://doaj.org/article/6e092941b1934439b2eadb08617f87ba
http://dx.doi.org/10.1371/journal.pone.0308015
UnpaywallVersion publishedVersion
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: HH5
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20061001
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: ABDBF
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Food Science Source
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: A8Z
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DIK
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: GX1
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: RPM
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest One Academic
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8FG
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M48
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR1Nb9Mw1BrdAS6I8bXCKAYhAYdU-XDi5IBQN61sSCvToKicIjtx2klpUpJWsCu_nPdcNxBRYD1Eavxsye_L78Xvg5AXHg8F91NppYopiyk7syI_jaw0ZT7YcsxXOinsbBScjNn7iT_ZIZuerQaB9VbXDvtJjau8__3r1VsQ-De6awN3NpP6i7JQfay_YmPW-S6cVRE2czhjzb0CSLe-vUSrxQpc2zPJdH9bpXVY6Zr-jebuLPKy3maW_hldeXNVLMTVN5Hnvx1dwzvktrE56WDNJHtkRxV3yZ6R6pq-MqWnX98jPwYU_wAcFfm0rC6XsznFIpIpnYHDWlGsFD7HCBpagq6ZmyROimdhSsEjVnOZK6rb61Awh2n16yafmrsguqjwckjPw6_AFMMATQ4XHZzeJ-Ph8aejE8t0abCSIPKWVgIeCvNtJbwsBPeJK5snYBZlbgDKUGTSt12VZVko0PYJhcR2x8pnmS2iNAVryHtAOgXgfJ_QVEjOUhFmYQZeYSKk46hAOsqWoJWSxOkSb0OOODElzLGTRh7rezkOrswaozESMTZE7BKrmbVYl_D4D_whUrqBxQLc-kVZTWMjz3GgbDAsmSOBlRhsTLogkhL8Q9h5yKXokqfIJ_E6m7VRI_EAKwiiUcW75LmGwCIcBUb5TMWqruPTD5-vAfTxogX00gBlJaAjESazAvaExb1akActSFAlSWt4H7l6g5U69hwPHVjwAmDmhtO3Dz9rhnFRjNwrVLlCGBBDF_zyoEsergWjwawXAY8EDOgatkSmhfr2SHE50zXQHfBU4AeL9hvpuhZ1H_0bBY_JLRfMVh2w5B6QzrJaqSdgdi5lj9zgEw7P8MjB5_Bdj-weHo_OL3r6Q05Paxp4Nx6dD778BMKjiUQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3JbtNAdFTCoVwQZWug0AGBgINTL-PtgFBYqoQuSNBWuZkZzzhBcmwTJ6p65YP4Rt6zx24tKuiluTnzxtK8_XneQsgLxw-470phSMWUwZSZGKErQ0NK5oIvx1xVFYUdHHqjY_Z54k7WyO-mFgbTKhudWClqmcf4jXzHsRz0pcEheVf8NHBqFN6uNiM0arbYU2enELKVb8cfgb4vbXv309GHkaGnChixFzpLIwaPmrmm4k4SgLvvK9OPwYwntgfCyxPhmrZKkiTgaKsDLnA8r3JZYvJQSrDeDrz3BrnJHNAlID_-pA3wQHd4ni7Pc3xrR3PDoMgzNcC-MCYO371g_qopAa0t6BVpXl7m6P6dr7m-ygp-dsrT9IIx3L1Dbmsvlg5rttsgayq7Sza0nijpa93M-s098mtI8QHgKE-ngNDlbE6xLaWkMwiBFxR7j88xJ4fmoL3muiyUonWVFGJsNRepotXAHgoONl2c5wZQfbtEiwVeN1X78LsyxcRCXRVGh-P75PhaKPSA9DLA-SahkgufSR4kQQJxZsyFZSlPWMoUoOfi2OoTpyFHFOum6DibI42qmz4fgqMaoxESMdJE7BOj3VXUTUH-A_8eKd3CYkvv6o98MY20hog8ZYKryiwBLjWDgwkbhFxAxAknD3zB-2Qb-SSq62NbxRQNsSchuml-nzyvILCtR4Z5Q1O-Ksto_OXkCkDfvnaAXmmgJAd0xFzXasCZsF1YB3KrAwnKKe4sbyJXN1gpo3Mxhp0Np1--_KxdxpdiLmCm8hXCMMAURPpenzysBaPFrBMCj3gM6Bp0RKaD-u5K9mNWdVW3IPaBH7x00ErXlaj76N8H2Sbro6OD_Wh_fLj3mNyywSmu0qHsLdJbLlbqCTi1S_G00iSUfL9u1fUHBKe3IQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtNAcFWCBFwQ5dVAoQsCAQcnfj8OCAVK1FAoCCjKzex6dxMkxzZxoqpXPouvY8Zeu7WooJfm5uyspZ33eOdByBMnCFngCW4I6UrDlaYyIk9EhhCuB76c68mqKOzDgb936L6betMN8ruphcG0ykYnVopa5Al-Ix86loO-NDgkQ6XTIj7tjl8VPw2cIIU3rc04jZpF9uXxEYRv5cvJLtD6qW2P3359s2foCQNG4kfOykjAu3Y9UzJHheD6B9IMEjDpyvZBkJninmlLpVTI0G6HjOOoXum5ymSREGDJHXjvJXI5cJwI0wmDaRvsgR7xfV2q5wTWUHPGoMgzOcAeMSYO4j1lCquJAa1d6BVpXp7l9P6du3l1nRXs-Iil6SnDOL5BrmuPlo5qFtwkGzK7STa1zijpc93Y-sUt8mtE8QHgKEtngNDVfEGxRaWgcwiHlxT7kC8wP4fmoMkWukSUoqUVFOJtueCppNXwHgrONl2e5AlQfdNEiyVePVX78BszxSRDXSFGR5Pb5PBCKHSH9DLA-RahgvHAFSxUoYKYM2HcsqTPLWly0HlJYvWJ05AjTnSDdJzTkcbVrV8AgVKN0RiJGGsi9onR7irqBiH_gX-NlG5hsb139Ue-nMVaW8S-NMFtdS0O7rULB-M2CDyH6BNOHgac9ckO8klc18q2SioeYX9CdNmCPnlcQWCLjwyFZcbWZRlPPn47B9CXzx2gZxpI5YCOhOm6DTgTtg7rQG53IEFRJZ3lLeTqBitlfCLSsLPh9LOXH7XL-FLMC8xkvkYYFzAFUb_fJ3drwWgx60TAI74LdA07ItNBfXcl-zGvOqxbEAfBD146aKXrXNS99--D7JAroLTi95OD_fvkmg3-cZUZZW-T3mq5lg_Av13xh5UioeT7RWuuP9mdu2Q
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELem7gFegPG1wgCDkACJlHw4X48BMW1IGwgoGk-RHdvrRJpETSIEj_zl3CVuWGCI0rfW50g--y6_6939TMhjL4x46EthScWUxZStrdiXsSUl8wHLMV91TWFHx8HBnL058U-2yPN1L8z5_L0XOi-MRmdVWagZcqvY2FG-HfiAvCdke378LvncJ45dK3Btz3TH_W3q6O3TkfQPrnhS5WV9Ec78s1zyUltU_NtXnufn3kX7V8nRehV9CcqXWduIWfb9N4LHTZd5jVwxoJQm_SnaIVuquE52jNnX9Knhpn52g_xIKH4BOcrz03J11iyWFFkmJV1ARLuiSCW-xBIbWoIzWpouT4ovS0khZFZLkSva3b9DAS_T1a9UPzXJIlqtMHvUzcO_iSnWCZomL5oc3iTz_dcfXx1Y5hoHKwtir7EyCGGYbyvu6Qjiq1DZYQa4SbsBeEuuhW-7SmsdcQRHERd4H7LymbZ5LCXAJe8WmRSgl11CJRchkzzSkYawMePCcVQgHGULcFtZ5kyJt97eNDMc53jVRp52ibsQYp1eoykqOjWKnhJrmFX1HB__kH-JJ2eQRYbu7gfY0dQYfBooG5AncwQcTQYLEy7YrIAAElYehYJPyQM8d2nf7jr4mTRBikFEXeGUPOokkKWjwDKgU97WdXr49tMGQh_ej4SeGCFdgjoyblovYE3I_jWS3BtJgq_JRsO7aCVrrdSp53gY4UKYADPXlnPx8MNhGB-KpX2FKluUYaApCNyDKbndG9qgWS-GMxIw2NdoZIIj1Y9HirNFR5LuQCgDH3jobLDWjXb3zv9OuEsuu4B0uxond49MmlWr7gFSbcR946B-AmFck_M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Genetic+algorithm+aided+hyper+parameter+optimization+based+ensemble+model+for+respiratory+disease+prediction+with+Explainable+AI&rft.jtitle=PloS+one&rft.au=Kaur%2C+Balraj+Preet&rft.au=Singh%2C+Harpreet&rft.au=Hans%2C+Rahul&rft.au=Sharma%2C+Sanjeev+Kumar&rft.date=2024-12-02&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=19&rft.issue=12&rft.spage=e0308015&rft_id=info:doi/10.1371%2Fjournal.pone.0308015&rft.externalDocID=A818681247
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon