A Genetic algorithm aided hyper parameter optimization based ensemble model for respiratory disease prediction with Explainable AI
In the current era, a lot of research is being done in the domain of disease diagnosis using machine learning. In recent times, one of the deadliest respiratory diseases, COVID-19, which causes serious damage to the lungs has claimed a lot of lives globally. Machine learning-based systems can assist...
        Saved in:
      
    
          | Published in | PloS one Vol. 19; no. 12; p. e0308015 | 
|---|---|
| Main Authors | , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          Public Library of Science
    
        02.12.2024
     Public Library of Science (PLoS)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1932-6203 1932-6203  | 
| DOI | 10.1371/journal.pone.0308015 | 
Cover
| Abstract | In the current era, a lot of research is being done in the domain of disease diagnosis using machine learning. In recent times, one of the deadliest respiratory diseases, COVID-19, which causes serious damage to the lungs has claimed a lot of lives globally. Machine learning-based systems can assist clinicians in the early diagnosis of the disease, which can reduce the deadly effects of the disease. For the successful deployment of these machine learning-based systems, hyperparameter-based optimization and feature selection are important issues. Motivated by the above, in this proposal, we design an improved model to predict the existence of respiratory disease among patients by incorporating hyperparameter optimization and feature selection. To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. Moreover, to enhance the efficacy of the predictions made by hyperparameter-optimized machine learning models, an ensemble model is proposed using a stacking classifier. Also, explainable AI was incorporated to define the feature importance by making use of Shapely adaptive explanations (SHAP) values. For the experimentation, the publicly accessible Mexico clinical dataset of COVID-19 was used. The results obtained show that the proposed model has superior prediction accuracy in comparison to its counterparts. Moreover, among all the hyperparameter-optimized algorithms, adaboost algorithm outperformed all the other hyperparameter-optimized algorithms. The various performance assessment metrics, including accuracy, precision, recall, AUC, and F1-score, were used to assess the results. | 
    
|---|---|
| AbstractList | In the current era, a lot of research is being done in the domain of disease diagnosis using machine learning. In recent times, one of the deadliest respiratory diseases, COVID-19, which causes serious damage to the lungs has claimed a lot of lives globally. Machine learning-based systems can assist clinicians in the early diagnosis of the disease, which can reduce the deadly effects of the disease. For the successful deployment of these machine learning-based systems, hyperparameter-based optimization and feature selection are important issues. Motivated by the above, in this proposal, we design an improved model to predict the existence of respiratory disease among patients by incorporating hyperparameter optimization and feature selection. To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. Moreover, to enhance the efficacy of the predictions made by hyperparameter-optimized machine learning models, an ensemble model is proposed using a stacking classifier. Also, explainable AI was incorporated to define the feature importance by making use of Shapely adaptive explanations (SHAP) values. For the experimentation, the publicly accessible Mexico clinical dataset of COVID-19 was used. The results obtained show that the proposed model has superior prediction accuracy in comparison to its counterparts. Moreover, among all the hyperparameter-optimized algorithms, adaboost algorithm outperformed all the other hyperparameter-optimized algorithms. The various performance assessment metrics, including accuracy, precision, recall, AUC, and F1-score, were used to assess the results. In the current era, a lot of research is being done in the domain of disease diagnosis using machine learning. In recent times, one of the deadliest respiratory diseases, COVID-19, which causes serious damage to the lungs has claimed a lot of lives globally. Machine learning-based systems can assist clinicians in the early diagnosis of the disease, which can reduce the deadly effects of the disease. For the successful deployment of these machine learning-based systems, hyperparameter-based optimization and feature selection are important issues. Motivated by the above, in this proposal, we design an improved model to predict the existence of respiratory disease among patients by incorporating hyperparameter optimization and feature selection. To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. Moreover, to enhance the efficacy of the predictions made by hyperparameter-optimized machine learning models, an ensemble model is proposed using a stacking classifier. Also, explainable AI was incorporated to define the feature importance by making use of Shapely adaptive explanations (SHAP) values. For the experimentation, the publicly accessible Mexico clinical dataset of COVID-19 was used. The results obtained show that the proposed model has superior prediction accuracy in comparison to its counterparts. Moreover, among all the hyperparameter-optimized algorithms, adaboost algorithm outperformed all the other hyperparameter-optimized algorithms. The various performance assessment metrics, including accuracy, precision, recall, AUC, and F1-score, were used to assess the results.In the current era, a lot of research is being done in the domain of disease diagnosis using machine learning. In recent times, one of the deadliest respiratory diseases, COVID-19, which causes serious damage to the lungs has claimed a lot of lives globally. Machine learning-based systems can assist clinicians in the early diagnosis of the disease, which can reduce the deadly effects of the disease. For the successful deployment of these machine learning-based systems, hyperparameter-based optimization and feature selection are important issues. Motivated by the above, in this proposal, we design an improved model to predict the existence of respiratory disease among patients by incorporating hyperparameter optimization and feature selection. To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. Moreover, to enhance the efficacy of the predictions made by hyperparameter-optimized machine learning models, an ensemble model is proposed using a stacking classifier. Also, explainable AI was incorporated to define the feature importance by making use of Shapely adaptive explanations (SHAP) values. For the experimentation, the publicly accessible Mexico clinical dataset of COVID-19 was used. The results obtained show that the proposed model has superior prediction accuracy in comparison to its counterparts. Moreover, among all the hyperparameter-optimized algorithms, adaboost algorithm outperformed all the other hyperparameter-optimized algorithms. The various performance assessment metrics, including accuracy, precision, recall, AUC, and F1-score, were used to assess the results.  | 
    
| Audience | Academic | 
    
| Author | Sharma, Chetna Hassan, Md. Mehedi Hans, Rahul Kaur, Balraj Preet Singh, Harpreet Sharma, Sanjeev Kumar  | 
    
| AuthorAffiliation | 3 Department of Computer Science and Applications, DAV University, Jalandhar, Punjab, India University of Electronic Science and Technology of China, CHINA 2 Department of Computer Science and Engineering, Thapar Institute of Engineering and Technology, Patiala, India 1 Department of Computer Science and Engineering, DAV University, Jalandhar, Punjab, India 5 Computer Science and Engineering Discipline, Khulna University, Khulna, Bangladesh 4 Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India  | 
    
| AuthorAffiliation_xml | – name: 1 Department of Computer Science and Engineering, DAV University, Jalandhar, Punjab, India – name: 2 Department of Computer Science and Engineering, Thapar Institute of Engineering and Technology, Patiala, India – name: 5 Computer Science and Engineering Discipline, Khulna University, Khulna, Bangladesh – name: 3 Department of Computer Science and Applications, DAV University, Jalandhar, Punjab, India – name: 4 Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India – name: University of Electronic Science and Technology of China, CHINA  | 
    
| Author_xml | – sequence: 1 givenname: Balraj Preet surname: Kaur fullname: Kaur, Balraj Preet – sequence: 2 givenname: Harpreet orcidid: 0000-0001-5938-7252 surname: Singh fullname: Singh, Harpreet – sequence: 3 givenname: Rahul surname: Hans fullname: Hans, Rahul – sequence: 4 givenname: Sanjeev Kumar surname: Sharma fullname: Sharma, Sanjeev Kumar – sequence: 5 givenname: Chetna surname: Sharma fullname: Sharma, Chetna – sequence: 6 givenname: Md. Mehedi orcidid: 0000-0002-9890-0968 surname: Hassan fullname: Hassan, Md. Mehedi  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39621641$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNk1tvnDAQhVGVqrm0_6BqkSpV7cNubQwG-lKtojRdKVKk3l6tAYZdRwZT2zTZPvaX1-ySaImiKvAAMt85njmDj4ODVrcYBC8pmVOW0g9XujctqHnnl-eEkYzQ5ElwRHMWzXhE2MHe-2FwbO0VIQnLOH8WHLKcR5TH9Cj4uwjPsUUnyxDUShvp1k0IssIqXG86NGEHBhp0_k13TjbyDzip27AA6xFsLTaFwrDRFaqw1iY0aDtpwGmzCStp0XNhZ7CS5VZ37TcIz246BbKFQblYPg-e1qAsvhifJ8GPz2ffT7_MLi7Pl6eLi1nJc-ZmJc2iOCEIrM7iPE-RpCWnaR35VnKoi4REWNd1BjxmeQYF50mMSVwTyKuK5Sk7CV7vfDulrRjjs4JRlpAkpXnkieWOqDRcic7IBsxGaJBiu6DNSoDxUSkUHEke5TEtfMax37CIEKqCZENFWVqA90p2Xn3bweYalLozpEQME7wtQQwTFOMEve7TWGVfNFiV2DoDalLM9Esr12KlfwtKOfUX9w7vRgejf_VonWikLVEpaFH3Q8Oxrz3K0gF9cw99OJaRWoHvXLa19huXg6lYZDTjGY3iId75A5S_K2xk6VuspV-fCN5PBJ5xeONW0Fsrlt--Pp69_Dll3-6xawTl1larfvj_7BR8tR_1Xca3p8MD8Q4ojbbWYP3YEX68Jyul2x4bn4hU_xf_A_djOCI | 
    
| CitedBy_id | crossref_primary_10_1007_s12033_025_01385_w | 
    
| Cites_doi | 10.3390/jimaging9010001 10.3390/diagnostics12061396 10.21203/rs.2.14454/v1 10.1038/s41598-021-90827-x 10.1109/ACCESS.2021.3116067 10.3390/s18103532 10.1080/10408363.2020.1783198 10.1016/j.cie.2021.107912 10.3390/diagnostics12051023 10.1002/widm.1249 10.1016/j.dajour.2024.100460 10.1177/1932296820924469 10.1007/s41870-021-00671-5 10.30534/ijeter/2020/55862020 10.1109/ICECOCS50124.2020.9314373 10.1016/j.mlwa.2022.100251 10.1038/s41598-021-90265-9 10.15837/ijccc.2019.2.3514 10.2147/JMDH.S322431 10.1016/B978-0-12-815739-8.00006-7 10.1038/s41598-021-88807-2 10.1016/j.coi.2021.07.003 10.1007/s10489-020-01997-6 10.1016/j.smhl.2020.100178 10.1016/j.bbe.2021.05.013 10.1016/j.neucom.2020.07.061 10.1016/j.neucom.2015.06.083 10.1016/j.compbiomed.2022.105405 10.1016/j.imu.2020.100449 10.1088/1742-6596/1192/1/012021 10.1186/s12911-019-1004-8 10.1016/j.knosys.2020.105746 10.1109/R10-HTC49770.2020.9356984 10.2166/ws.2018.059 10.1111/tmi.13383 10.1038/s41598-022-06218-3 10.1007/s42979-020-00394-7 10.1016/j.compbiomed.2021.104356 10.1016/j.imu.2022.100941  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright: © 2024 Kaur et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. COPYRIGHT 2024 Public Library of Science 2024 Kaur et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 Kaur et al 2024 Kaur et al 2024 Kaur et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| Copyright_xml | – notice: Copyright: © 2024 Kaur et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. – notice: COPYRIGHT 2024 Public Library of Science – notice: 2024 Kaur et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 Kaur et al 2024 Kaur et al – notice: 2024 Kaur et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU COVID D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY RC3 7X8 5PM ADTOC UNPAY DOA  | 
    
| DOI | 10.1371/journal.pone.0308015 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Science in Context ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Technology Collection (LUT) Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College Coronavirus Research Database ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database (Proquest) Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database Health & Medical Collection (Alumni Edition) Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database (Proquest) Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Collection ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection Coronavirus Research Database ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic  | 
    
| DatabaseTitleList | CrossRef MEDLINE Agricultural Science Database MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Sciences (General) | 
    
| DocumentTitleAlternate | Respiratory disease prediction with explainable AI | 
    
| EISSN | 1932-6203 | 
    
| ExternalDocumentID | 3135057192 oai_doaj_org_article_6e092941b1934439b2eadb08617f87ba 10.1371/journal.pone.0308015 PMC11611116 A818681247 39621641 10_1371_journal_pone_0308015  | 
    
| Genre | Journal Article | 
    
| GeographicLocations | Mexico India  | 
    
| GeographicLocations_xml | – name: Mexico – name: India  | 
    
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESTFP ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PUEGO PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM ADRAZ ALIPV CGR CUY CVF ECM EIF IPNFZ NPM RIG BBORY 3V. 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K COVID DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI PRINS RC3 7X8 5PM ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c693t-c182450ea3f84997e07c617f26219afb502efff8a64398ab6654e54f0a9dd3973 | 
    
| IEDL.DBID | M48 | 
    
| ISSN | 1932-6203 | 
    
| IngestDate | Wed Aug 13 01:19:53 EDT 2025 Fri Oct 03 12:52:53 EDT 2025 Sun Oct 26 03:13:11 EDT 2025 Tue Sep 30 17:06:47 EDT 2025 Mon Sep 08 15:05:43 EDT 2025 Tue Oct 07 07:28:53 EDT 2025 Mon Oct 20 22:42:25 EDT 2025 Mon Oct 20 16:57:25 EDT 2025 Thu Oct 16 15:40:32 EDT 2025 Thu Oct 16 15:40:08 EDT 2025 Thu May 22 21:23:28 EDT 2025 Mon Jul 21 06:01:24 EDT 2025 Wed Oct 01 03:35:35 EDT 2025 Thu Apr 24 22:53:20 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 12 | 
    
| Language | English | 
    
| License | Copyright: © 2024 Kaur et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. cc-by Creative Commons Attribution License  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c693t-c182450ea3f84997e07c617f26219afb502efff8a64398ab6654e54f0a9dd3973 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: The authors declare no conflict of interest.  | 
    
| ORCID | 0000-0001-5938-7252 0000-0002-9890-0968  | 
    
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0308015 | 
    
| PMID | 39621641 | 
    
| PQID | 3135057192 | 
    
| PQPubID | 1436336 | 
    
| PageCount | e0308015 | 
    
| ParticipantIDs | plos_journals_3135057192 doaj_primary_oai_doaj_org_article_6e092941b1934439b2eadb08617f87ba unpaywall_primary_10_1371_journal_pone_0308015 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11611116 proquest_miscellaneous_3140922876 proquest_journals_3135057192 gale_infotracmisc_A818681247 gale_infotracacademiconefile_A818681247 gale_incontextgauss_ISR_A818681247 gale_incontextgauss_IOV_A818681247 gale_healthsolutions_A818681247 pubmed_primary_39621641 crossref_primary_10_1371_journal_pone_0308015 crossref_citationtrail_10_1371_journal_pone_0308015  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2024-12-02 | 
    
| PublicationDateYYYYMMDD | 2024-12-02 | 
    
| PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-02 day: 02  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA  | 
    
| PublicationTitle | PloS one | 
    
| PublicationTitleAlternate | PLoS One | 
    
| PublicationYear | 2024 | 
    
| Publisher | Public Library of Science Public Library of Science (PLoS)  | 
    
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS)  | 
    
| References | E. Sevinç (pone.0308015.ref007) 2022; vol. 165 Fatma Hilal Yagin (pone.0308015.ref031) 2023; 154 M. AlJame (pone.0308015.ref043) 2020; vol. 21 F. Ernawan (pone.0308015.ref004) 2022; vol. 13 Fatih Ozyurt (pone.0308015.ref027) 2021; 132 K. Debjit (pone.0308015.ref019) 2022; vol. 12 D. McCoy (pone.0308015.ref042) 2021; vol. 11 A. T. Imam (pone.0308015.ref053) 2021; vol. 12 Y. Alali (pone.0308015.ref017) 2022; vol. 12 N. Rai (pone.0308015.ref055) 2022; vol. 3 K. Chadaga (pone.0308015.ref063) 2021; 16 Mehrdad Rostami (pone.0308015.ref026) 2022; 30 Yasser A. Ali (pone.0308015.ref058) 2023; 11 S. Uddin (pone.0308015.ref003) 2019; vol. 19 S. H. Kassania (pone.0308015.ref037) 2021; vol. 41 T. K. An (pone.0308015.ref008) 2010; vol. 1 A. Zargari Khuzani (pone.0308015.ref011) 2021; vol. 11 L. K. Shrivastav (pone.0308015.ref045) 2021; vol. 51 L. J. Muhammad (pone.0308015.ref005) 2021; 2 L. Yang (pone.0308015.ref018) 2020; vol. 415 Károly Héberger (pone.0308015.ref033) 2024; 17 M. A. Haqmi Abas (pone.0308015.ref057) 2020; vol. 8 pone.0308015.ref022 D. Ndwandwe (pone.0308015.ref041) 2021; vol. 71 T. P. Velavan (pone.0308015.ref016) 2020; vol. 25 Matteo Chieregato (pone.0308015.ref059) 2022; 12 A. Becerra-Sánchez (pone.0308015.ref064) 2022; 12 X. Han (pone.0308015.ref061) 2022; 9 M. Pourhomayoun (pone.0308015.ref024) 2021; vol. 20 M. Ciotti (pone.0308015.ref015) 2020; vol. 0 Susmita Hamal (pone.0308015.ref032) 2024; 11 S. Mohana Saranya (pone.0308015.ref021) 2021; vol. 12 pone.0308015.ref054 R. Sreedharan (pone.0308015.ref012) 2020; vol. 2240 X. Xia (pone.0308015.ref048) 2019; vol. 19 Rishav Pramanik (pone.0308015.ref030) 2022; 128 N. K. Chowdhury (pone.0308015.ref010) 2022; vol. 145 E. Emary (pone.0308015.ref014) 2016; vol. 172 A. C. Florea (pone.0308015.ref056) 2019; vol. 14 Yibai Xiong (pone.0308015.ref051) 2022; 11 O. Sagi (pone.0308015.ref040) 2018; vol. 8 pone.0308015.ref052 P. Hu (pone.0308015.ref013) 2020; vol. 195 M. Adimoolam (pone.0308015.ref038) 2022; vol. 39 O. O. Abayomi-Alli (pone.0308015.ref039) 2022; vol. 22 pone.0308015.ref050 Ajay Sharma (pone.0308015.ref006) 2022; 14 S. A. F. Sayed (pone.0308015.ref009) 2021; vol. 9 B. Bode (pone.0308015.ref062) 2020; 14 M. Kukar (pone.0308015.ref036) 2021; 11 N. Mansbridge (pone.0308015.ref002) 2018; vol. 18 K. C. Dewi (pone.0308015.ref034) 2019; vol. 1192 El Sayed M. El-Kenawy (pone.0308015.ref029) 2020; 8 pone.0308015.ref001 Soham Chattopadhyay (pone.0308015.ref028) 2021; 11 pone.0308015.ref044 pone.0308015.ref049 Omneya Attallah (pone.0308015.ref025) 2022; 12 A. F. de Moraes Batista (pone.0308015.ref035) 2020 pone.0308015.ref047 pone.0308015.ref046 M. Shahhosseini (pone.0308015.ref020) 2022; vol. 7 Abdulrhman Fahad Aljouie (pone.0308015.ref023) 2021; 14 L. J. Muhammad (pone.0308015.ref060) 2021; 2  | 
    
| References_xml | – ident: pone.0308015.ref001 – volume: vol. 3 start-page: 172 issue: no. June year: 2022 ident: pone.0308015.ref055 article-title: Mortality prediction of COVID-19 patients using soft voting classifier publication-title: Int. J. Cogn. Comput. Eng. – volume: 11 issue: 2 year: 2023 ident: pone.0308015.ref058 article-title: Hyperparameter Search for Machine Learning Algorithms for Optimizing the Computational Complexity publication-title: Processes – volume: 154 issue: November 2022 year: 2023 ident: pone.0308015.ref031 article-title: Explainable Artificial Intelligence Model for Identifying COVID-19 Gene Biomarkers publication-title: Computers in Biology and Medicine – volume: 9 start-page: 1 issue: 1 year: 2022 ident: pone.0308015.ref061 article-title: A survey on deep learning in COVID-19 diagnosis publication-title: Journal of imaging doi: 10.3390/jimaging9010001 – volume: 12 start-page: 1396 issue: 6 year: 2022 ident: pone.0308015.ref064 article-title: Mortality analysis of patients with COVID-19 in Mexico based on risk factors applying machine learning techniques publication-title: Diagnostics doi: 10.3390/diagnostics12061396 – volume: vol. 13 start-page: 514 issue: no. 8 year: 2022 ident: pone.0308015.ref004 article-title: Light Gradient Boosting with Hyper Parameter Tuning Optimization for COVID-19 Prediction publication-title: Int. J. Adv. Comput. Sci. Appl. – ident: pone.0308015.ref044 doi: 10.21203/rs.2.14454/v1 – ident: pone.0308015.ref047 – volume: vol. 11 start-page: 1 issue: no. 1 year: 2021 ident: pone.0308015.ref042 article-title: Ensemble machine learning of factors influencing COVID-19 across US counties publication-title: Sci. Rep. doi: 10.1038/s41598-021-90827-x – volume: vol. 9 start-page: 135697 year: 2021 ident: pone.0308015.ref009 article-title: Applying Different Machine Learning Techniques for Prediction of COVID-19 Severity publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3116067 – volume: vol. 18 start-page: 1 issue: no. 10 year: 2018 ident: pone.0308015.ref002 article-title: Feature selection and comparison of machine learning algorithms in classification of grazing and rumination behaviour in sheep publication-title: Sensors (Switzerland) doi: 10.3390/s18103532 – volume: vol. 0 start-page: 365 issue: no. 0 year: 2020 ident: pone.0308015.ref015 article-title: The COVID-19 pandemic publication-title: Crit. Rev. Clin. Lab. Sci. doi: 10.1080/10408363.2020.1783198 – volume: vol. 165 start-page: 107912 issue: no. December year: 2022 ident: pone.0308015.ref007 article-title: An empowered AdaBoost algorithm implementation. A COVID-19 dataset study publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2021.107912 – volume: vol. 12 issue: no. 5 year: 2022 ident: pone.0308015.ref019 article-title: An Improved Machine-Learning Approach for COVID-19 Prediction Using Harris Hawks Optimization and Feature Analysis Using SHAP publication-title: Diagnostics doi: 10.3390/diagnostics12051023 – volume: vol. 8 start-page: 1 issue: no. 4 year: 2018 ident: pone.0308015.ref040 article-title: Ensemble learning. A survey publication-title: Wiley Interdiscip. Rev. Data Min. Knowl. Discov. doi: 10.1002/widm.1249 – volume: 11 start-page: 100460 issue: June 2023 year: 2024 ident: pone.0308015.ref032 article-title: A Comparative Analysis of Machine Learning Algorithms for Detecting COVID-19 Using Lung X-Ray Images publication-title: Decision Analytics Journal doi: 10.1016/j.dajour.2024.100460 – ident: pone.0308015.ref052 – volume: 8 year: 2020 ident: pone.0308015.ref029 article-title: Novel Feature Selection and Voting Classifier Algorithms for COVID-19 Classification in CT Images publication-title: IEEE Access – volume: vol. 12 start-page: 174 issue: no. 3 year: 2021 ident: pone.0308015.ref053 article-title: SVM Machine Learning Classifier to Automate the Extraction of SRS Elements publication-title: Int. J. Adv. Comput. Sci. Appl. – volume: 14 start-page: 813 issue: 4 year: 2020 ident: pone.0308015.ref062 article-title: Glycemic characteristics and clinical outcomes of COVID-19 patients hospitalized in the United States publication-title: Journal of diabetes science and technology doi: 10.1177/1932296820924469 – volume: 14 start-page: 1949 issue: 4 year: 2022 ident: pone.0308015.ref006 article-title: Performance Analysis of Machine Learning Based Optimized Feature Selection Approaches for Breast Cancer Diagnosis publication-title: International Journal of Information Technology (Singapore) doi: 10.1007/s41870-021-00671-5 – volume: vol. 8 start-page: 2551 issue: no. 6 year: 2020 ident: pone.0308015.ref057 article-title: Agarwood Oil Quality Classification using Support Vector Classifier and Grid Search Cross Validation Hyperparameter Tuning publication-title: Int. J. Emerg. Trends Eng. Res. doi: 10.30534/ijeter/2020/55862020 – volume: 11 start-page: 1 issue: 1 year: 2022 ident: pone.0308015.ref051 article-title: Comparing Different Machine Learning Techniques for Predicting COVID-19 Severity publication-title: Infectious Diseases of Poverty – volume: vol. 39 issue: no. 4 year: 2022 ident: pone.0308015.ref038 article-title: A hybrid learning approach for the stage-wise classification and prediction of COVID-19 X-ray images publication-title: Expert Syst. – ident: pone.0308015.ref022 doi: 10.1109/ICECOCS50124.2020.9314373 – volume: vol. 7 start-page: 100251 issue: no. December year: 2022 ident: pone.0308015.ref020 article-title: Optimizing ensemble weights and hyperparameters of machine learning models for regression problems publication-title: Mach. Learn. with Appl. doi: 10.1016/j.mlwa.2022.100251 – volume: 11 start-page: 10738 year: 2021 ident: pone.0308015.ref036 article-title: COVID-19 diagnosis by routine blood tests using machine learning publication-title: Sci Rep doi: 10.1038/s41598-021-90265-9 – volume: vol. 14 start-page: 154 issue: no. 2 year: 2019 ident: pone.0308015.ref056 article-title: Weighted Random Search for hyperparameter optimization publication-title: Int. J. Comput. Commun. Control doi: 10.15837/ijccc.2019.2.3514 – volume: 14 start-page: 2017 year: 2021 ident: pone.0308015.ref023 article-title: Early Prediction of COVID-19 Ventilation Requirement and Mortality from Routinely Collected Baseline Chest Radiographs, Laboratory, and Clinical Data with Machine Learning publication-title: Journal of Multidisciplinary Healthcare doi: 10.2147/JMDH.S322431 – ident: pone.0308015.ref054 doi: 10.1016/B978-0-12-815739-8.00006-7 – volume: vol. 11 start-page: 1 issue: no. 1 year: 2021 ident: pone.0308015.ref011 article-title: COVID-Classifier. an automated machine learning model to assist in the diagnosis of COVID-19 infection in chest X-ray images publication-title: Sci. Rep. doi: 10.1038/s41598-021-88807-2 – ident: pone.0308015.ref049 – volume: vol. 71 start-page: 111 issue: no. 1 year: 2021 ident: pone.0308015.ref041 article-title: COVID-19 vaccines publication-title: Curr. Opin. Immunol. doi: 10.1016/j.coi.2021.07.003 – year: 2020 ident: pone.0308015.ref035 article-title: COVID-19 diagnosis prediction in emergency care patients. a machine learning approach publication-title: MedRxiv – volume: vol. 51 start-page: 2727 issue: no. 5 year: 2021 ident: pone.0308015.ref045 article-title: A gradient boosting machine learning approach in modeling the impact of temperature and humidity on the transmission rate of COVID-19 in India publication-title: Appl. Intell. doi: 10.1007/s10489-020-01997-6 – volume: vol. 2240 start-page: 15 issue: no. Ml year: 2020 ident: pone.0308015.ref012 article-title: Analysis and prediction of smart data using machine learning publication-title: AIP Conf. Proc. – volume: vol. 20 start-page: 100178 issue: no. April year: 2021 ident: pone.0308015.ref024 article-title: Predicting mortality risk in patients with COVID-19 using machine learning to help medical decision-making publication-title: Smart Heal. doi: 10.1016/j.smhl.2020.100178 – volume: vol. 41 start-page: 867 issue: no. 3 year: 2021 ident: pone.0308015.ref037 article-title: Automatic Detection of Coronavirus Disease (COVID-19) in X-ray and CT Images. A Machine Learning Based Approach publication-title: Biocybern. Biomed. Eng. doi: 10.1016/j.bbe.2021.05.013 – volume: vol. 415 start-page: 295 year: 2020 ident: pone.0308015.ref018 article-title: On hyperparameter optimization of machine learning algorithms. Theory and practice publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.07.061 – volume: vol. 172 start-page: 371 year: 2016 ident: pone.0308015.ref014 article-title: Binary grey wolf optimization approaches for feature selection publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.06.083 – volume: vol. 22 issue: no. 6 year: 2022 ident: pone.0308015.ref039 article-title: An Ensemble Learning Model for COVID-19 Detection from Blood Test Samples publication-title: Sensors – volume: 16 start-page: 221 issue: 10 year: 2021 ident: pone.0308015.ref063 article-title: COVID-19 mortality prediction among patients using epidemiological parameters: an ensemble machine learning approach publication-title: Engineered Science – volume: vol. 145 start-page: 105405 issue: no. November year: 2022 ident: pone.0308015.ref010 article-title: Machine learning for detecting COVID-19 from cough sounds. An ensemble-based MCDM method publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2022.105405 – volume: 12 start-page: 1 issue: 1 year: 2022 ident: pone.0308015.ref059 article-title: A Hybrid Machine Learning/Deep Learning COVID-19 Severity Predictive Model from CT Images and Clinical Data publication-title: Scientific Reports – volume: vol. 21 start-page: 100449 year: 2020 ident: pone.0308015.ref043 article-title: Ensemble learning model for diagnosing COVID-19 from routine blood tests publication-title: Informatics Med. Unlocked doi: 10.1016/j.imu.2020.100449 – volume: vol. 1192 start-page: 012021 issue: No. 1 year: 2019 ident: pone.0308015.ref034 article-title: Ensemble learning for predicting mortality rates affected by air quality publication-title: In Journal of physics. Conference series doi: 10.1088/1742-6596/1192/1/012021 – volume: vol. 19 start-page: 1 issue: no. 1 year: 2019 ident: pone.0308015.ref003 article-title: Comparing different supervised machine learning algorithms for disease prediction publication-title: BMC Med. Inform. Decis. Mak. doi: 10.1186/s12911-019-1004-8 – volume: vol. 1 start-page: 359 year: 2010 ident: pone.0308015.ref008 article-title: A new Diverse AdaBoost classifier publication-title: Proc.—Int. Conf. Artif. Intell. Comput. Intell. AICI – volume: 17 issue: 1 year: 2024 ident: pone.0308015.ref033 article-title: Frequent Errors in Modeling by Machine Learning. A Prototype Case of Predicting the Timely Evolution of COVID-19 Pandemic publication-title: Algorithms – volume: vol. 12 start-page: 448 issue: no. 9 year: 2021 ident: pone.0308015.ref021 article-title: Prediction of Covid-19 Using Hyperparameter Optimized Convolutional Neural Network publication-title: Turkish J. Comput. Math. Educ. – volume: vol. 195 start-page: 105746 issue: no. xxxx year: 2020 ident: pone.0308015.ref013 article-title: Improved Binary Grey Wolf Optimizer and Its application for feature selection publication-title: Knowledge-Based Syst. doi: 10.1016/j.knosys.2020.105746 – volume: 12 issue: 5 year: 2022 ident: pone.0308015.ref025 article-title: An Intelligent ECG-Based Tool for Diagnosing COVID-19 via Ensemble Deep Learning Techniques publication-title: Biosensors – volume: 128 start-page: 1 year: 2022 ident: pone.0308015.ref030 article-title: An Adaptive and Altruistic PSO-Based Deep Feature Selection Method for Pneumonia Detection from Chest X-Rays publication-title: Applied Soft Computing – ident: pone.0308015.ref046 – ident: pone.0308015.ref050 doi: 10.1109/R10-HTC49770.2020.9356984 – volume: vol. 19 start-page: 137 issue: no. 1 year: 2019 ident: pone.0308015.ref048 article-title: Genetic algorithm hyper-parameter optimization using taguchi design for groundwater pollution source identification publication-title: Water Sci. Technol. Water Supply doi: 10.2166/ws.2018.059 – volume: vol. 25 start-page: 278 issue: no. 3 year: 2020 ident: pone.0308015.ref016 article-title: The COVID-19 epidemic publication-title: Trop. Med. Int. Heal. doi: 10.1111/tmi.13383 – volume: vol. 12 start-page: 1 issue: no. 1 year: 2022 ident: pone.0308015.ref017 article-title: A proficient approach to forecast COVID-19 spread via optimized dynamic machine learning models publication-title: Sci. Rep. doi: 10.1038/s41598-022-06218-3 – volume: 11 start-page: 1 issue: 2 year: 2021 ident: pone.0308015.ref028 article-title: Covid-19 Detection by Optimizing Deep Residual Features with Improved Clustering-Based Golden Ratio Optimizer publication-title: Diagnostics – volume: 2 start-page: 1 issue: 1 year: 2021 ident: pone.0308015.ref005 article-title: Supervised Machine Learning Models for Prediction of COVID-19 Infection Using Epidemiology Dataset publication-title: SN Computer Science doi: 10.1007/s42979-020-00394-7 – volume: 132 start-page: 104356 issue: March year: 2021 ident: pone.0308015.ref027 article-title: An Automated COVID-19 Detection Based on Fused Dynamic Exemplar Pyramid Feature Extraction and Hybrid Feature Selection Using Deep Learning publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2021.104356 – volume: 30 start-page: 100941 issue: January year: 2022 ident: pone.0308015.ref026 article-title: A Novel Explainable COVID-19 Diagnosis Method by Integration of Feature Selection with Random Forest publication-title: Informatics in Medicine Unlocked doi: 10.1016/j.imu.2022.100941 – volume: 2 start-page: 1 issue: 1 year: 2021 ident: pone.0308015.ref060 article-title: Supervised machine learning models for prediction of COVID-19 infection using epidemiology dataset publication-title: SN computer science doi: 10.1007/s42979-020-00394-7  | 
    
| SSID | ssj0053866 | 
    
| Score | 2.4937887 | 
    
| Snippet | In the current era, a lot of research is being done in the domain of disease diagnosis using machine learning. In recent times, one of the deadliest... | 
    
| SourceID | plos doaj unpaywall pubmedcentral proquest gale pubmed crossref  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source  | 
    
| StartPage | e0308015 | 
    
| SubjectTerms | Accuracy Algorithms Analysis Artificial intelligence Biology and Life Sciences Care and treatment Computer and Information Sciences COVID-19 COVID-19 - diagnosis COVID-19 - virology Design optimization Diagnosis Evaluation Explainable artificial intelligence Genetic algorithms Humans Learning algorithms Lung diseases Machine Learning Mathematical optimization Medicine and Health Sciences Mexico Mortality Pandemics Parameters Performance assessment Physical Sciences Predictions Research and Analysis Methods Respiratory diseases Respiratory tract diseases SARS-CoV-2 - isolation & purification Social Sciences  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQXuCCKK-mFDAICThkm4cTJ8cFUbVIgAQU9RbZsd2tlE2iZFeIK7-cGccbNqJSe2Bvu55E8sx4_M165jMhr2KeCZ4o6SvNtM90YPw8UbmvFEsAy7FE26awT5_TkzP28Tw537nqC2vCBnrgQXFHqQ5gB2ehBKTBYPeUEcxdAhAPucm4tNAoyPJtMjXEYFjFaeoa5WIeHjm7zNum1nNkaAnwGtydjcjy9Y9RedZWTX8V5Py3cvL2pm7Fr5-iqna2peN75K7Dk3QxzGOP3NL1fbLnVmxP3zha6bcPyO8FxS8gR0V10XSX6-WKIkGkoktIRjuKLOArrI6hDcSRlWvQpLjPKQrZrl7JSlN7dQ4FqEu7v6f01J3z0LbDgx_7HP7DS7HEz_Vn0cXpQ3J2_OH7-xPf3cDgl2ker_0Ssg-WBFrEJoPUiOuAl6j4KIVAJ4xMgkgbYzKBuCYTEq8y1gkzgciVAqQTPyKzGnS-T6gSkjMlMpMZyPhKIcNQpzLUgYSIU5ahR-KtOYrS0ZPjLRlVYc_cOKQpg0YLNGLhjOgRf3yqHeg5rpF_h5YeZZFc2_4ALlc4lyuuczmPPEc_KYZO1TFEFAtkB0TAxD3y0kogwUaNFTwXYtP3xemXHzcQ-vZ1IvTaCZkG1FEK1zUBc0Lironk4UQSwkQ5Gd5Hr95qpS_iMMbkFBA-PLn19KuHX4zD-FKsyqt1s0EZBpqCnDv1yONhYYyajXPwkZSBXbPJkpmofjpSXy4tv3kIWQh84KXzcXXdyLoH_8O6T8idCICrLVmKDsls3W30UwCea_nMxpg_kH6C8Q priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbK9gAXRHk1UMAgJOCQbR7O64DQFrVqkVhQoai3yI7tXaRsErK7Qlz55cx4nbQRFXRvWU8iecYz-Sb2fEPIyzBJeRJJ4UrFlMuUp90skpkrJYsAy7FImaKwj9P4-Ix9OI_Ot8i0q4XBY5VdTDSBWtYFfiPfD_0QsTQAknfNDxe7RuHuatdCg9vWCvKtoRi7QbYDZMYake2Dw-nn0y42g3fHsS2gCxN_39pr3NSVGiNzi4ftcS-9oAyPfx-tR01ZL6-Con-fqLy5rhr-6ycvy0uvq6M75LbFmXSyWRg7ZEtVd8mO9eQlfW3ppt_cI78nFC9AjvJyBlNezRcUiSMlnUOS2lJkB1_gqRlaQ3xZ2MJNiu8_SSELVgtRKmpa6lCAwLS92L2ndv-HNi1uCJn78MsvxaN_tm6LTk7uk7Ojw6_vj13bmcEt4ixcuQVkJSzyFA91CilTorykACikgxgCINci8gKltU454p2UC2xxrCKmPZ5JCQgofEBGFeh8l1DJRcIkT3WqIRMsuPB9FQtfeQIiUVH4Dgk7c-SFpS3H7hllbvbiEkhfNhrN0Yi5NaJD3P6uZkPb8R_5A7R0L4uk2-aPup3l1ofzWHkAJpkvAPQymJgIwA0F5IQw8zQR3CHPcJ3kmwrWPnTkE2QNRCCVOOSFkUDijQpP9sz4ernMTz59u4bQl9OB0CsrpGtQR8FtNQXMCQm9BpJ7A0kIH8VgeBdXdaeVZX7haHBnt9KvHn7eD-ND8bRepeo1yjDQFOTisUMebhyj12yYwRqJGdg1HbjMQPXDker73PCe-5CdwA8eOu6961rWffTviTwmtwKAquaQUrBHRqt2rZ4A1FyJpzZ-_AGz24GI priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELem7gFegPG1wgCDkACJlHw4X48BMW1IGwgoGk-RHdvrRJpETSIEj_zl3CVuWGCI0rfW50g--y6_6939TMhjL4x46EthScWUxZStrdiXsSUl8wHLMV91TWFHx8HBnL058U-2yPN1L8z5_L0XOi-MRmdVWagZcqvY2FG-HfiAvCdke378LvncJ45dK3Btz3TH_W3q6O3TkfQPrnhS5WV9Ec78s1zyUltU_NtXnufn3kX7V8nRehV9CcqXWduIWfb9N4LHTZd5jVwxoJQm_SnaIVuquE52jNnX9Knhpn52g_xIKH4BOcrz03J11iyWFFkmJV1ARLuiSCW-xBIbWoIzWpouT4ovS0khZFZLkSva3b9DAS_T1a9UPzXJIlqtMHvUzcO_iSnWCZomL5oc3iTz_dcfXx1Y5hoHKwtir7EyCGGYbyvu6Qjiq1DZYQa4SbsBeEuuhW-7SmsdcQRHERd4H7LymbZ5LCXAJe8WmRSgl11CJRchkzzSkYawMePCcVQgHGULcFtZ5kyJt97eNDMc53jVRp52ibsQYp1eoykqOjWKnhJrmFX1HB__kH-JJ2eQRYbu7gfY0dQYfBooG5AncwQcTQYLEy7YrIAAElYehYJPyQM8d2nf7jr4mTRBikFEXeGUPOokkKWjwDKgU97WdXr49tMGQh_ej4SeGCFdgjoyblovYE3I_jWS3BtJgq_JRsO7aCVrrdSp53gY4UKYADPXlnPx8MNhGB-KpX2FKluUYaApCNyDKbndG9qgWS-GMxIw2NdoZIIj1Y9HirNFR5LuQCgDH3jobLDWjXb3zv9OuEsuu4B0uxond49MmlWr7gFSbcR946B-AmFck_M priority: 102 providerName: Unpaywall  | 
    
| Title | A Genetic algorithm aided hyper parameter optimization based ensemble model for respiratory disease prediction with Explainable AI | 
    
| URI | https://www.ncbi.nlm.nih.gov/pubmed/39621641 https://www.proquest.com/docview/3135057192 https://www.proquest.com/docview/3140922876 https://pubmed.ncbi.nlm.nih.gov/PMC11611116 https://doi.org/10.1371/journal.pone.0308015 https://doaj.org/article/6e092941b1934439b2eadb08617f87ba http://dx.doi.org/10.1371/journal.pone.0308015  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 19 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: HH5 dateStart: 20060101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20060101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20061001 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DOA dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: ABDBF dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Food Science Source customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: A8Z dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DIK dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: GX1 dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M~E dateStart: 20060101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Open Access customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: RPM dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Health & Medical Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7X7 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest One Academic customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: BENPR dateStart: 20061201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8FG dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8C1 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1932-6203 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M48 dateStart: 20061201 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR1Nb9Mw1BrdAS6I8bXCKAYhAYdU-XDi5IBQN61sSCvToKicIjtx2klpUpJWsCu_nPdcNxBRYD1Eavxsye_L78Xvg5AXHg8F91NppYopiyk7syI_jaw0ZT7YcsxXOinsbBScjNn7iT_ZIZuerQaB9VbXDvtJjau8__3r1VsQ-De6awN3NpP6i7JQfay_YmPW-S6cVRE2czhjzb0CSLe-vUSrxQpc2zPJdH9bpXVY6Zr-jebuLPKy3maW_hldeXNVLMTVN5Hnvx1dwzvktrE56WDNJHtkRxV3yZ6R6pq-MqWnX98jPwYU_wAcFfm0rC6XsznFIpIpnYHDWlGsFD7HCBpagq6ZmyROimdhSsEjVnOZK6rb61Awh2n16yafmrsguqjwckjPw6_AFMMATQ4XHZzeJ-Ph8aejE8t0abCSIPKWVgIeCvNtJbwsBPeJK5snYBZlbgDKUGTSt12VZVko0PYJhcR2x8pnmS2iNAVryHtAOgXgfJ_QVEjOUhFmYQZeYSKk46hAOsqWoJWSxOkSb0OOODElzLGTRh7rezkOrswaozESMTZE7BKrmbVYl_D4D_whUrqBxQLc-kVZTWMjz3GgbDAsmSOBlRhsTLogkhL8Q9h5yKXokqfIJ_E6m7VRI_EAKwiiUcW75LmGwCIcBUb5TMWqruPTD5-vAfTxogX00gBlJaAjESazAvaExb1akActSFAlSWt4H7l6g5U69hwPHVjwAmDmhtO3Dz9rhnFRjNwrVLlCGBBDF_zyoEsergWjwawXAY8EDOgatkSmhfr2SHE50zXQHfBU4AeL9hvpuhZ1H_0bBY_JLRfMVh2w5B6QzrJaqSdgdi5lj9zgEw7P8MjB5_Bdj-weHo_OL3r6Q05Paxp4Nx6dD778BMKjiUQ | 
    
| linkProvider | Scholars Portal | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3JbtNAdFTCoVwQZWug0AGBgINTL-PtgFBYqoQuSNBWuZkZzzhBcmwTJ6p65YP4Rt6zx24tKuiluTnzxtK8_XneQsgLxw-470phSMWUwZSZGKErQ0NK5oIvx1xVFYUdHHqjY_Z54k7WyO-mFgbTKhudWClqmcf4jXzHsRz0pcEheVf8NHBqFN6uNiM0arbYU2enELKVb8cfgb4vbXv309GHkaGnChixFzpLIwaPmrmm4k4SgLvvK9OPwYwntgfCyxPhmrZKkiTgaKsDLnA8r3JZYvJQSrDeDrz3BrnJHNAlID_-pA3wQHd4ni7Pc3xrR3PDoMgzNcC-MCYO371g_qopAa0t6BVpXl7m6P6dr7m-ygp-dsrT9IIx3L1Dbmsvlg5rttsgayq7Sza0nijpa93M-s098mtI8QHgKE-ngNDlbE6xLaWkMwiBFxR7j88xJ4fmoL3muiyUonWVFGJsNRepotXAHgoONl2c5wZQfbtEiwVeN1X78LsyxcRCXRVGh-P75PhaKPSA9DLA-SahkgufSR4kQQJxZsyFZSlPWMoUoOfi2OoTpyFHFOum6DibI42qmz4fgqMaoxESMdJE7BOj3VXUTUH-A_8eKd3CYkvv6o98MY20hog8ZYKryiwBLjWDgwkbhFxAxAknD3zB-2Qb-SSq62NbxRQNsSchuml-nzyvILCtR4Z5Q1O-Ksto_OXkCkDfvnaAXmmgJAd0xFzXasCZsF1YB3KrAwnKKe4sbyJXN1gpo3Mxhp0Np1--_KxdxpdiLmCm8hXCMMAURPpenzysBaPFrBMCj3gM6Bp0RKaD-u5K9mNWdVW3IPaBH7x00ErXlaj76N8H2Sbro6OD_Wh_fLj3mNyywSmu0qHsLdJbLlbqCTi1S_G00iSUfL9u1fUHBKe3IQ | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtNAcFWCBFwQ5dVAoQsCAQcnfj8OCAVK1FAoCCjKzex6dxMkxzZxoqpXPouvY8Zeu7WooJfm5uyspZ33eOdByBMnCFngCW4I6UrDlaYyIk9EhhCuB76c68mqKOzDgb936L6betMN8ruphcG0ykYnVopa5Al-Ix86loO-NDgkQ6XTIj7tjl8VPw2cIIU3rc04jZpF9uXxEYRv5cvJLtD6qW2P3359s2foCQNG4kfOykjAu3Y9UzJHheD6B9IMEjDpyvZBkJninmlLpVTI0G6HjOOoXum5ymSREGDJHXjvJXI5cJwI0wmDaRvsgR7xfV2q5wTWUHPGoMgzOcAeMSYO4j1lCquJAa1d6BVpXp7l9P6du3l1nRXs-Iil6SnDOL5BrmuPlo5qFtwkGzK7STa1zijpc93Y-sUt8mtE8QHgKEtngNDVfEGxRaWgcwiHlxT7kC8wP4fmoMkWukSUoqUVFOJtueCppNXwHgrONl2e5AlQfdNEiyVePVX78BszxSRDXSFGR5Pb5PBCKHSH9DLA-RahgvHAFSxUoYKYM2HcsqTPLWly0HlJYvWJ05AjTnSDdJzTkcbVrV8AgVKN0RiJGGsi9onR7irqBiH_gX-NlG5hsb139Ue-nMVaW8S-NMFtdS0O7rULB-M2CDyH6BNOHgac9ckO8klc18q2SioeYX9CdNmCPnlcQWCLjwyFZcbWZRlPPn47B9CXzx2gZxpI5YCOhOm6DTgTtg7rQG53IEFRJZ3lLeTqBitlfCLSsLPh9LOXH7XL-FLMC8xkvkYYFzAFUb_fJ3drwWgx60TAI74LdA07ItNBfXcl-zGvOqxbEAfBD146aKXrXNS99--D7JAroLTi95OD_fvkmg3-cZUZZW-T3mq5lg_Av13xh5UioeT7RWuuP9mdu2Q | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELem7gFegPG1wgCDkACJlHw4X48BMW1IGwgoGk-RHdvrRJpETSIEj_zl3CVuWGCI0rfW50g--y6_6939TMhjL4x46EthScWUxZStrdiXsSUl8wHLMV91TWFHx8HBnL058U-2yPN1L8z5_L0XOi-MRmdVWagZcqvY2FG-HfiAvCdke378LvncJ45dK3Btz3TH_W3q6O3TkfQPrnhS5WV9Ec78s1zyUltU_NtXnufn3kX7V8nRehV9CcqXWduIWfb9N4LHTZd5jVwxoJQm_SnaIVuquE52jNnX9Knhpn52g_xIKH4BOcrz03J11iyWFFkmJV1ARLuiSCW-xBIbWoIzWpouT4ovS0khZFZLkSva3b9DAS_T1a9UPzXJIlqtMHvUzcO_iSnWCZomL5oc3iTz_dcfXx1Y5hoHKwtir7EyCGGYbyvu6Qjiq1DZYQa4SbsBeEuuhW-7SmsdcQRHERd4H7LymbZ5LCXAJe8WmRSgl11CJRchkzzSkYawMePCcVQgHGULcFtZ5kyJt97eNDMc53jVRp52ibsQYp1eoykqOjWKnhJrmFX1HB__kH-JJ2eQRYbu7gfY0dQYfBooG5AncwQcTQYLEy7YrIAAElYehYJPyQM8d2nf7jr4mTRBikFEXeGUPOokkKWjwDKgU97WdXr49tMGQh_ej4SeGCFdgjoyblovYE3I_jWS3BtJgq_JRsO7aCVrrdSp53gY4UKYADPXlnPx8MNhGB-KpX2FKluUYaApCNyDKbndG9qgWS-GMxIw2NdoZIIj1Y9HirNFR5LuQCgDH3jobLDWjXb3zv9OuEsuu4B0uxond49MmlWr7gFSbcR946B-AmFck_M | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Genetic+algorithm+aided+hyper+parameter+optimization+based+ensemble+model+for+respiratory+disease+prediction+with+Explainable+AI&rft.jtitle=PloS+one&rft.au=Kaur%2C+Balraj+Preet&rft.au=Singh%2C+Harpreet&rft.au=Hans%2C+Rahul&rft.au=Sharma%2C+Sanjeev+Kumar&rft.date=2024-12-02&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=19&rft.issue=12&rft.spage=e0308015&rft_id=info:doi/10.1371%2Fjournal.pone.0308015&rft.externalDocID=A818681247 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |