COVID-19 and Pneumonia detection and web deployment from CT scan and X-ray images using deep learning
During the COVID-19 pandemic, pneumonia was the leading cause of respiratory failure and death. In addition to SARS-COV-2, it can be caused by several other bacterial and viral agents. Even today, variants of SARS-COV-2 are endemic and COVID-19 cases are common in many places. The symptoms of COVID-...
Saved in:
| Published in | PloS one Vol. 19; no. 7; p. e0302413 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Public Library of Science
08.07.2024
Public Library of Science (PLoS) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1932-6203 1932-6203 |
| DOI | 10.1371/journal.pone.0302413 |
Cover
| Summary: | During the COVID-19 pandemic, pneumonia was the leading cause of respiratory failure and death. In addition to SARS-COV-2, it can be caused by several other bacterial and viral agents. Even today, variants of SARS-COV-2 are endemic and COVID-19 cases are common in many places. The symptoms of COVID-19 are highly diverse and robust, ranging from invisible to severe respiratory failure. Current detection methods for the disease are time-consuming and expensive with low accuracy and precision. To address such situations, we have designed a framework for COVID-19 and Pneumonia detection using multiple deep learning algorithms further accompanied by a deployment scheme. In this study, we have utilized four prominent deep learning models, which are VGG-19, ResNet-50, Inception V3 and Xception, on two separate datasets of CT scan and X-ray images (COVID/Non-COVID) to identify the best models for the detection of COVID-19. We achieved accuracies ranging from 86% to 99% depending on the model and dataset. To further validate our findings, we have applied the four distinct models on two more supplementary datasets of X-ray images of bacterial pneumonia and viral pneumonia. Additionally, we have implemented a flask app to visualize the outcome of our framework to show the identified COVID and Non-COVID images. The findings of this study will be helpful to develop an AI-driven automated tool for the cost effective and faster detection and better management of COVID-19 patients. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: The authors have declared that no competing interests exist. |
| ISSN: | 1932-6203 1932-6203 |
| DOI: | 10.1371/journal.pone.0302413 |