CSCAHHO: Chaotic hybridization algorithm of the Sine Cosine with Harris Hawk optimization algorithms for solving global optimization problems

Because of the No Free Lunch (NFL) rule, we are still under the way developing new algorithms and improving the capabilities of the existed algorithms. Under consideration of the simple and steady convergence capability of the sine cosine algorithm (SCA) and the fast convergence rate of the Harris H...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 17; no. 5; p. e0263387
Main Authors Zhang, Yu-Jun, Yan, Yu-Xin, Zhao, Juan, Gao, Zheng-Ming
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 19.05.2022
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0263387

Cover

More Information
Summary:Because of the No Free Lunch (NFL) rule, we are still under the way developing new algorithms and improving the capabilities of the existed algorithms. Under consideration of the simple and steady convergence capability of the sine cosine algorithm (SCA) and the fast convergence rate of the Harris Hawk optimization (HHO) algorithms, we hereby propose a new hybridization algorithm of the SCA and HHO algorithm in this paper, called the CSCAHHO algorithm henceforth. The energy parameter is introduced to balance the exploration and exploitation procedure for individuals in the new swarm, and chaos is introduced to improve the randomness. Updating equations is redefined and combined of the equations in the SCA and HHO algorithms. Simulation experiments on 27 benchmark functions and CEC 2014 competitive functions, together with 3 engineering problems are carried out. Comparisons have been made with the original SCA, HHO, Archimedes optimization algorithm (AOA), Seagull optimization algorithm (SOA), Sooty Tern optimization algorithm (STOA), Arithmetic optimizer (AO) and Chimp optimization algorithm (ChOA). Simulation experiments on either unimodal or multimodal, benchmark or CEC2014 functions, or real engineering problems all verified the better performance of the proposed CSAHHO, such as faster convergence rate, low residual errors, and steadier capability. Matlab code of this algorithm is shared in Gitee with the following address: https://gitee.com/yuj-zhang/cscahho .
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0263387