A novel method of combining generalized frequency response function and convolutional neural network for complex system fault diagnosis

To solve the problem of low accuracy in traditional fault diagnosis methods, a novel method of combining generalized frequency response function(GFRF) and convolutional neural network(CNN) is proposed. In order to accurately characterize system state information, this paper proposed a variable step...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 15; no. 2; p. e0228324
Main Authors Chen, Lerui, Zhang, Zerui, Cao, Jianfu
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 04.02.2020
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0228324

Cover

More Information
Summary:To solve the problem of low accuracy in traditional fault diagnosis methods, a novel method of combining generalized frequency response function(GFRF) and convolutional neural network(CNN) is proposed. In order to accurately characterize system state information, this paper proposed a variable step size least mean square (VSSLMS) adaptive algorithm to calculate the second-order GFRF spectrum values under normal and fault states; In order to improve the ability of fault feature extraction, a convolution neural network (CNN) with gradient descent learning rate and alternate convolution layer and pooling layer is designed to extract the fault features from GFRF spectrum. In the proposed method, the second-order GFRF spectrum of each state of Permanent Magnet Synchronous Motor (PMSM) is obtained by VSSLMS; Then, the two-dimension GFRF spectrum, which is regarded as the gray value of the image,will be further transformed into image. Finally, the CNN is trained with learning rate by gradient descent way to realize the fault diagnosis of PMSM. Experimental results indicate that the accuracy of proposed method is 98.75%, which verifies the reliability of the proposed method in application of PMSM fault diagnosis.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0228324