Identifying Parkinson's disease and parkinsonism cases using routinely collected healthcare data: A systematic review

Population-based, prospective studies can provide important insights into Parkinson's disease (PD) and other parkinsonian disorders. Participant follow-up in such studies is often achieved through linkage to routinely collected healthcare datasets. We systematically reviewed the published liter...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 14; no. 1; p. e0198736
Main Authors Harding, Zoe, Wilkinson, Tim, Stevenson, Anna, Horrocks, Sophie, Ly, Amanda, Schnier, Christian, Breen, David P., Rannikmäe, Kristiina, Sudlow, Cathie L. M.
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 31.01.2019
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0198736

Cover

Abstract Population-based, prospective studies can provide important insights into Parkinson's disease (PD) and other parkinsonian disorders. Participant follow-up in such studies is often achieved through linkage to routinely collected healthcare datasets. We systematically reviewed the published literature on the accuracy of these datasets for this purpose. We searched four electronic databases for published studies that compared PD and parkinsonism cases identified using routinely collected data to a reference standard. We extracted study characteristics and two accuracy measures: positive predictive value (PPV) and/or sensitivity. We identified 18 articles, resulting in 27 measures of PPV and 14 of sensitivity. For PD, PPV ranged from 56-90% in hospital datasets, 53-87% in prescription datasets, 81-90% in primary care datasets and was 67% in mortality datasets. Combining diagnostic and medication codes increased PPV. For parkinsonism, PPV ranged from 36-88% in hospital datasets, 40-74% in prescription datasets, and was 94% in mortality datasets. Sensitivity ranged from 15-73% in single datasets for PD and 43-63% in single datasets for parkinsonism. In many settings, routinely collected datasets generate good PPVs and reasonable sensitivities for identifying PD and parkinsonism cases. However, given the wide range of identified accuracy estimates, we recommend cohorts conduct their own context-specific validation studies if existing evidence is lacking. Further research is warranted to investigate primary care and medication datasets, and to develop algorithms that balance a high PPV with acceptable sensitivity.
AbstractList BackgroundPopulation-based, prospective studies can provide important insights into Parkinson's disease (PD) and other parkinsonian disorders. Participant follow-up in such studies is often achieved through linkage to routinely collected healthcare datasets. We systematically reviewed the published literature on the accuracy of these datasets for this purpose.MethodsWe searched four electronic databases for published studies that compared PD and parkinsonism cases identified using routinely collected data to a reference standard. We extracted study characteristics and two accuracy measures: positive predictive value (PPV) and/or sensitivity.ResultsWe identified 18 articles, resulting in 27 measures of PPV and 14 of sensitivity. For PD, PPV ranged from 56-90% in hospital datasets, 53-87% in prescription datasets, 81-90% in primary care datasets and was 67% in mortality datasets. Combining diagnostic and medication codes increased PPV. For parkinsonism, PPV ranged from 36-88% in hospital datasets, 40-74% in prescription datasets, and was 94% in mortality datasets. Sensitivity ranged from 15-73% in single datasets for PD and 43-63% in single datasets for parkinsonism.ConclusionsIn many settings, routinely collected datasets generate good PPVs and reasonable sensitivities for identifying PD and parkinsonism cases. However, given the wide range of identified accuracy estimates, we recommend cohorts conduct their own context-specific validation studies if existing evidence is lacking. Further research is warranted to investigate primary care and medication datasets, and to develop algorithms that balance a high PPV with acceptable sensitivity.
We searched four electronic databases for published studies that compared PD and parkinsonism cases identified using routinely collected data to a reference standard. We extracted study characteristics and two accuracy measures: positive predictive value (PPV) and/or sensitivity. We identified 18 articles, resulting in 27 measures of PPV and 14 of sensitivity. For PD, PPV ranged from 56-90% in hospital datasets, 53-87% in prescription datasets, 81-90% in primary care datasets and was 67% in mortality datasets. Combining diagnostic and medication codes increased PPV. For parkinsonism, PPV ranged from 36-88% in hospital datasets, 40-74% in prescription datasets, and was 94% in mortality datasets. Sensitivity ranged from 15-73% in single datasets for PD and 43-63% in single datasets for parkinsonism. In many settings, routinely collected datasets generate good PPVs and reasonable sensitivities for identifying PD and parkinsonism cases. However, given the wide range of identified accuracy estimates, we recommend cohorts conduct their own context-specific validation studies if existing evidence is lacking. Further research is warranted to investigate primary care and medication datasets, and to develop algorithms that balance a high PPV with acceptable sensitivity.
Background Population-based, prospective studies can provide important insights into Parkinson’s disease (PD) and other parkinsonian disorders. Participant follow-up in such studies is often achieved through linkage to routinely collected healthcare datasets. We systematically reviewed the published literature on the accuracy of these datasets for this purpose. Methods We searched four electronic databases for published studies that compared PD and parkinsonism cases identified using routinely collected data to a reference standard. We extracted study characteristics and two accuracy measures: positive predictive value (PPV) and/or sensitivity. Results We identified 18 articles, resulting in 27 measures of PPV and 14 of sensitivity. For PD, PPV ranged from 56–90% in hospital datasets, 53–87% in prescription datasets, 81–90% in primary care datasets and was 67% in mortality datasets. Combining diagnostic and medication codes increased PPV. For parkinsonism, PPV ranged from 36–88% in hospital datasets, 40–74% in prescription datasets, and was 94% in mortality datasets. Sensitivity ranged from 15–73% in single datasets for PD and 43–63% in single datasets for parkinsonism. Conclusions In many settings, routinely collected datasets generate good PPVs and reasonable sensitivities for identifying PD and parkinsonism cases. However, given the wide range of identified accuracy estimates, we recommend cohorts conduct their own context-specific validation studies if existing evidence is lacking. Further research is warranted to investigate primary care and medication datasets, and to develop algorithms that balance a high PPV with acceptable sensitivity.
Population-based, prospective studies can provide important insights into Parkinson's disease (PD) and other parkinsonian disorders. Participant follow-up in such studies is often achieved through linkage to routinely collected healthcare datasets. We systematically reviewed the published literature on the accuracy of these datasets for this purpose. We searched four electronic databases for published studies that compared PD and parkinsonism cases identified using routinely collected data to a reference standard. We extracted study characteristics and two accuracy measures: positive predictive value (PPV) and/or sensitivity. We identified 18 articles, resulting in 27 measures of PPV and 14 of sensitivity. For PD, PPV ranged from 56-90% in hospital datasets, 53-87% in prescription datasets, 81-90% in primary care datasets and was 67% in mortality datasets. Combining diagnostic and medication codes increased PPV. For parkinsonism, PPV ranged from 36-88% in hospital datasets, 40-74% in prescription datasets, and was 94% in mortality datasets. Sensitivity ranged from 15-73% in single datasets for PD and 43-63% in single datasets for parkinsonism. In many settings, routinely collected datasets generate good PPVs and reasonable sensitivities for identifying PD and parkinsonism cases. However, given the wide range of identified accuracy estimates, we recommend cohorts conduct their own context-specific validation studies if existing evidence is lacking. Further research is warranted to investigate primary care and medication datasets, and to develop algorithms that balance a high PPV with acceptable sensitivity.
Background Population-based, prospective studies can provide important insights into Parkinson’s disease (PD) and other parkinsonian disorders. Participant follow-up in such studies is often achieved through linkage to routinely collected healthcare datasets. We systematically reviewed the published literature on the accuracy of these datasets for this purpose. Methods We searched four electronic databases for published studies that compared PD and parkinsonism cases identified using routinely collected data to a reference standard. We extracted study characteristics and two accuracy measures: positive predictive value (PPV) and/or sensitivity. Results We identified 18 articles, resulting in 27 measures of PPV and 14 of sensitivity. For PD, PPV ranged from 56–90% in hospital datasets, 53–87% in prescription datasets, 81–90% in primary care datasets and was 67% in mortality datasets. Combining diagnostic and medication codes increased PPV. For parkinsonism, PPV ranged from 36–88% in hospital datasets, 40–74% in prescription datasets, and was 94% in mortality datasets. Sensitivity ranged from 15–73% in single datasets for PD and 43–63% in single datasets for parkinsonism. Conclusions In many settings, routinely collected datasets generate good PPVs and reasonable sensitivities for identifying PD and parkinsonism cases. However, given the wide range of identified accuracy estimates, we recommend cohorts conduct their own context-specific validation studies if existing evidence is lacking. Further research is warranted to investigate primary care and medication datasets, and to develop algorithms that balance a high PPV with acceptable sensitivity.
Population-based, prospective studies can provide important insights into Parkinson's disease (PD) and other parkinsonian disorders. Participant follow-up in such studies is often achieved through linkage to routinely collected healthcare datasets. We systematically reviewed the published literature on the accuracy of these datasets for this purpose.BACKGROUNDPopulation-based, prospective studies can provide important insights into Parkinson's disease (PD) and other parkinsonian disorders. Participant follow-up in such studies is often achieved through linkage to routinely collected healthcare datasets. We systematically reviewed the published literature on the accuracy of these datasets for this purpose.We searched four electronic databases for published studies that compared PD and parkinsonism cases identified using routinely collected data to a reference standard. We extracted study characteristics and two accuracy measures: positive predictive value (PPV) and/or sensitivity.METHODSWe searched four electronic databases for published studies that compared PD and parkinsonism cases identified using routinely collected data to a reference standard. We extracted study characteristics and two accuracy measures: positive predictive value (PPV) and/or sensitivity.We identified 18 articles, resulting in 27 measures of PPV and 14 of sensitivity. For PD, PPV ranged from 56-90% in hospital datasets, 53-87% in prescription datasets, 81-90% in primary care datasets and was 67% in mortality datasets. Combining diagnostic and medication codes increased PPV. For parkinsonism, PPV ranged from 36-88% in hospital datasets, 40-74% in prescription datasets, and was 94% in mortality datasets. Sensitivity ranged from 15-73% in single datasets for PD and 43-63% in single datasets for parkinsonism.RESULTSWe identified 18 articles, resulting in 27 measures of PPV and 14 of sensitivity. For PD, PPV ranged from 56-90% in hospital datasets, 53-87% in prescription datasets, 81-90% in primary care datasets and was 67% in mortality datasets. Combining diagnostic and medication codes increased PPV. For parkinsonism, PPV ranged from 36-88% in hospital datasets, 40-74% in prescription datasets, and was 94% in mortality datasets. Sensitivity ranged from 15-73% in single datasets for PD and 43-63% in single datasets for parkinsonism.In many settings, routinely collected datasets generate good PPVs and reasonable sensitivities for identifying PD and parkinsonism cases. However, given the wide range of identified accuracy estimates, we recommend cohorts conduct their own context-specific validation studies if existing evidence is lacking. Further research is warranted to investigate primary care and medication datasets, and to develop algorithms that balance a high PPV with acceptable sensitivity.CONCLUSIONSIn many settings, routinely collected datasets generate good PPVs and reasonable sensitivities for identifying PD and parkinsonism cases. However, given the wide range of identified accuracy estimates, we recommend cohorts conduct their own context-specific validation studies if existing evidence is lacking. Further research is warranted to investigate primary care and medication datasets, and to develop algorithms that balance a high PPV with acceptable sensitivity.
Audience Academic
Author Harding, Zoe
Wilkinson, Tim
Breen, David P.
Rannikmäe, Kristiina
Sudlow, Cathie L. M.
Horrocks, Sophie
Ly, Amanda
Stevenson, Anna
Schnier, Christian
AuthorAffiliation 6 Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, Scotland
2 Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
5 Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh, United Kingdom
4 Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
3 Centre for Medical Informatics, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, United Kingdom
Liverpool John Moores University, UNITED KINGDOM
1 College of Medicine & Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
AuthorAffiliation_xml – name: Liverpool John Moores University, UNITED KINGDOM
– name: 3 Centre for Medical Informatics, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, United Kingdom
– name: 4 Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
– name: 2 Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
– name: 5 Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh, United Kingdom
– name: 6 Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, Scotland
– name: 1 College of Medicine & Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
Author_xml – sequence: 1
  givenname: Zoe
  surname: Harding
  fullname: Harding, Zoe
– sequence: 2
  givenname: Tim
  orcidid: 0000-0001-8952-0982
  surname: Wilkinson
  fullname: Wilkinson, Tim
– sequence: 3
  givenname: Anna
  orcidid: 0000-0002-0435-3562
  surname: Stevenson
  fullname: Stevenson, Anna
– sequence: 4
  givenname: Sophie
  surname: Horrocks
  fullname: Horrocks, Sophie
– sequence: 5
  givenname: Amanda
  surname: Ly
  fullname: Ly, Amanda
– sequence: 6
  givenname: Christian
  surname: Schnier
  fullname: Schnier, Christian
– sequence: 7
  givenname: David P.
  surname: Breen
  fullname: Breen, David P.
– sequence: 8
  givenname: Kristiina
  surname: Rannikmäe
  fullname: Rannikmäe, Kristiina
– sequence: 9
  givenname: Cathie L. M.
  surname: Sudlow
  fullname: Sudlow, Cathie L. M.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30703084$$D View this record in MEDLINE/PubMed
BookMark eNqNk9tq3DAQhk1JaQ7tG5TWUOjhYrc62JKdi8ISelgIpPR0K2R5vKtUlraSnXTfvnJ2N6xDKMEXNqNvfs38Mz5ODqyzkCTPMZpiyvH7S9d7K810FcNThMuCU_YoOcIlJRNGED3Y-z5MjkO4RCinBWNPkkOKOKKoyI6Sfl6D7XSz1naRfpX-t7bB2TchrXUAGSCVtk5Xu7gObapiNKR9GBK86zttwaxT5YwB1UGdLkGabqmkh7SWnTxNZ2lYhw5a2WmVerjScP00edxIE-DZ9n2S_Pz08cfZl8n5xef52ex8olhJuklFMCsQZ02uyoJUDaJVXWdlmZeElzUhwElBc8g4bnCVZ6gCymhTc0RYZBShJ8nLje7KuCC2jgVBMM8I5wVikZhviNrJS7HyupV-LZzU4ibg_EJIHws3IEoMDaO8yBBrMiqraG6FEeakAiIJrqJWvtHq7Uqur6Uxt4IYiWFouxLEMDSxHVrM-7Ctsq9aqFUciJdmVMz4xOqlWLgrwWielWwQeLsV8O5PD6ETrQ4KjJEWXH_Tb5kVOM8G9NUd9H5XttRCxsa1bVy8Vw2iYpZzXMbVyYpITe-h4lNDq1XssNExPkp4N0qITAd_u4XsQxDz798ezl78GrOv99jNAgZn4m46G8bgi32nby3e_Q8RyDaA8i4ED81DJ3h6J03pTg7XR0e0-X_yPyBBMuc
CitedBy_id crossref_primary_10_3389_fnagi_2021_826213
crossref_primary_10_1186_s12911_021_01556_0
crossref_primary_10_1080_09593985_2019_1615678
crossref_primary_10_1371_journal_pone_0246342
crossref_primary_10_1212_WNL_0000000000201627
crossref_primary_10_1111_ene_16000
crossref_primary_10_1212_WNL_0000000000012601
crossref_primary_10_1186_s13023_021_01699_3
crossref_primary_10_1212_NE9_0000000000200200
crossref_primary_10_1016_j_prdoa_2020_100061
crossref_primary_10_1111_dom_15943
crossref_primary_10_1080_09553002_2023_2267640
crossref_primary_10_3389_fdgth_2023_1149154
crossref_primary_10_1016_j_envres_2023_115944
crossref_primary_10_1002_mds_30075
crossref_primary_10_1002_mds_29682
crossref_primary_10_1016_j_jns_2024_122891
crossref_primary_10_2147_CLEP_S381289
crossref_primary_10_1111_ene_15782
crossref_primary_10_1002_mds_27933
crossref_primary_10_1007_s00415_024_12280_w
crossref_primary_10_1016_j_parkreldis_2023_105764
crossref_primary_10_3233_JPD_240098
crossref_primary_10_1007_s00228_020_02847_7
crossref_primary_10_1016_j_jamda_2023_04_004
Cites_doi 10.1212/WNL.0000000000000641
10.1136/jnnp.55.3.181
10.1034/j.1600-0404.2001.00191.x
10.1136/jnnp-2013-305277
10.1159/000365590
10.2105/AJPH.82.2.243
10.1016/j.jalz.2018.02.016
10.1159/000336356
10.1002/mdc3.12185
10.1136/jnnp.73.5.529
10.1093/ageing/28.2.99
10.1212/WNL.57.8.1497
10.1016/j.jns.2014.08.048
10.1136/bmj.b2535
10.1001/jamaneurol.2013.114
10.1016/S0895-4356(02)00409-2
10.1159/000381857
10.1212/WNL.52.6.1214
10.1186/2046-4053-4-1
10.7326/0003-4819-155-8-201110180-00009
10.1212/WNL.53.3.521
10.1002/mds.22829
10.1002/mds.20907
10.1186/s13063-017-2394-5
10.1371/journal.pmed.1001779
10.1371/journal.pmed.1001885
10.1093/ageing/afy068
10.1002/mds.21353
10.1002/mdc3.12318
10.1002/mus.22195
10.1093/brain/awf080
10.1007/s10654-014-9890-7
10.1002/mds.27360
10.1002/mds.20479
10.1093/jamia/ocv130
10.1016/j.jclinepi.2011.09.002
10.1016/S0140-6736(15)61124-2
10.1371/journal.pone.0172639
10.1002/mds.22283
10.1002/mds.870130305
10.1002/mds.10537
ContentType Journal Article
Copyright COPYRIGHT 2019 Public Library of Science
2019 Harding et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2019 Harding et al 2019 Harding et al
Copyright_xml – notice: COPYRIGHT 2019 Public Library of Science
– notice: 2019 Harding et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2019 Harding et al 2019 Harding et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1371/journal.pone.0198736
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale in Context. Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
Health & Medical Collection (Alumni Edition)
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList



Agricultural Science Database

MEDLINE


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Veterinary Medicine
DocumentTitleAlternate Parkinson's disease and parkinsonism in routine health data
EISSN 1932-6203
ExternalDocumentID 2174277806
oai_doaj_org_article_91ef6378406f43ab932b10172be2a21b
10.1371/journal.pone.0198736
PMC6354966
A571908448
30703084
10_1371_journal_pone_0198736
Genre Meta-Analysis
Research Support, Non-U.S. Gov't
Systematic Review
Journal Article
GeographicLocations United Kingdom--UK
Scotland
GeographicLocations_xml – name: United Kingdom--UK
– name: Scotland
GrantInformation_xml – fundername: Medical Research Council
  grantid: MR/S004130/1
– fundername: Medical Research Council
  grantid: MR/L023784/2
– fundername: Medical Research Council
  grantid: MR/L023784/1
– fundername: Medical Research Council
  grantid: MR/P001823/1
– fundername: ;
– fundername: ;
  grantid: MR/P001823/1
– fundername: ;
  grantid: Rowling Scholarship
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESTFP
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ADRAZ
ALIPV
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
BBORY
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
5PM
ADTOC
UNPAY
AAPBV
ABPTK
ID FETCH-LOGICAL-c692t-b2168076f5c982bf03bdd49959279d22e72835e471f1b540be363fd7026959c23
IEDL.DBID M48
ISSN 1932-6203
IngestDate Sun Nov 05 00:20:58 EDT 2023
Fri Oct 03 12:52:42 EDT 2025
Sun Oct 26 03:51:55 EDT 2025
Tue Sep 30 16:48:46 EDT 2025
Wed Oct 01 13:04:57 EDT 2025
Tue Oct 07 07:19:36 EDT 2025
Mon Oct 20 21:51:43 EDT 2025
Mon Oct 20 16:48:08 EDT 2025
Thu Oct 16 15:06:08 EDT 2025
Thu Oct 16 14:48:39 EDT 2025
Thu May 22 21:21:27 EDT 2025
Mon Jul 21 05:36:09 EDT 2025
Wed Oct 01 04:38:22 EDT 2025
Thu Apr 24 23:03:20 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
cc-by
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c692t-b2168076f5c982bf03bdd49959279d22e72835e471f1b540be363fd7026959c23
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-3
ObjectType-Evidence Based Healthcare-1
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ObjectType-Undefined-3
Competing Interests: The authors have declared that no competing interests exist.
ZH and TW are joint first authors
ORCID 0000-0002-0435-3562
0000-0001-8952-0982
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0198736
PMID 30703084
PQID 2174277806
PQPubID 1436336
PageCount e0198736
ParticipantIDs plos_journals_2174277806
doaj_primary_oai_doaj_org_article_91ef6378406f43ab932b10172be2a21b
unpaywall_primary_10_1371_journal_pone_0198736
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6354966
proquest_miscellaneous_2179481546
proquest_journals_2174277806
gale_infotracmisc_A571908448
gale_infotracacademiconefile_A571908448
gale_incontextgauss_ISR_A571908448
gale_incontextgauss_IOV_A571908448
gale_healthsolutions_A571908448
pubmed_primary_30703084
crossref_primary_10_1371_journal_pone_0198736
crossref_citationtrail_10_1371_journal_pone_0198736
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-01-31
PublicationDateYYYYMMDD 2019-01-31
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-31
  day: 31
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2019
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References R Woodfield (ref14) 2015; 10
D Moher (ref19) 2009; 339
AE Lang (ref1) 2018; 33
A Chiò (ref46) 1998; 13
NR Szumski (ref28) 2009; 24
AL Feldman (ref24) 2012; 38
PF Whiting (ref22) 2011; 155
A Chiò (ref43) 2002; 55
M Brandt-Christensen (ref45) 2006; 21
A Schrag (ref48) 2002; 73
S. Jaffe (ref4) 2015; 385
AJ Hughes (ref12) 2001; 57
K Swarztrauber (ref27) 2005; 20
M Kestenbaum (ref26) 2015; 2
T Thacker (ref36) 2016; 3
(ref3) 2014; 29
AJ Hughes (ref11) 1992; 55
D White (ref31) 2007; 22
MK Beyer (ref38) 2001; 103
T Wilkinson (ref17) 2018; 14
JH Bower (ref34) 1999; 52
J Meara (ref33) 1999; 28
CH Adler (ref10) 2014; 83
P-A Fall (ref39) 2003; 18
EI Benchimol (ref5) 2015; 12
CH Williams-Gray (ref40) 2013; 84
J Benito-León (ref37) 2014; 347
KA Mc Cord (ref6) 2018; 19
L Gao (ref15) 2018; 47
V Gallo (ref25) 2015; 15
C Sudlow (ref2) 2015; 12
J Chubak (ref16) 2012; 65
T Ostbye (ref42) 1999; 53
DE Stickler (ref44) 2011; 44
(ref7) 1992
AJ Hughes (ref13) 2002; 125
S Horrocks (ref18) 2017; 12
W-Q Wei (ref29) 2016; 23
ref8
D Moher (ref20) 2015; 4
A Stevenson (ref21) 2016
L Wermuth (ref30) 2015; 2015
ref9
R Savica (ref35) 2013; 70
EJ Newman (ref47) 2009; 24
ES Fisher (ref41) 1992; 82
DA Butt (ref23) 2014; 43
MA Hernán (ref32) 2004; 251
References_xml – volume: 83
  start-page: 406
  year: 2014
  ident: ref10
  article-title: Low clinical diagnostic accuracy of early vs advanced Parkinson disease: clinicopathologic study
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000000641
– volume: 55
  start-page: 181
  year: 1992
  ident: ref11
  article-title: Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases
  publication-title: J Neurol Neurosurg Psychiatr
  doi: 10.1136/jnnp.55.3.181
– volume: 103
  start-page: 7
  year: 2001
  ident: ref38
  article-title: Causes of death in a community-based study of Parkinson’s disease
  publication-title: Acta Neurol Scand
  doi: 10.1034/j.1600-0404.2001.00191.x
– volume: 84
  start-page: 1258
  year: 2013
  ident: ref40
  article-title: The CamPaIGN study of Parkinson’s disease: 10-year outlook in an incident population-based cohort
  publication-title: J Neurol Neurosurg Psychiatr
  doi: 10.1136/jnnp-2013-305277
– volume: 43
  start-page: 28
  year: 2014
  ident: ref23
  article-title: A validation study of administrative data algorithms to identify patients with Parkinsonism with prevalence and incidence trends
  publication-title: Neuroepidemiology
  doi: 10.1159/000365590
– volume: 82
  start-page: 243
  year: 1992
  ident: ref41
  article-title: The accuracy of Medicare’s hospital claims data: progress has been made, but problems remain
  publication-title: Am J Public Health
  doi: 10.2105/AJPH.82.2.243
– volume: 14
  start-page: 1038
  year: 2018
  ident: ref17
  article-title: Identifying dementia cases with routinely collected health data: A systematic review
  publication-title: Alzheimers Dement
  doi: 10.1016/j.jalz.2018.02.016
– volume: 38
  start-page: 186
  year: 2012
  ident: ref24
  article-title: Accuracy and sensitivity of Parkinsonian disorder diagnoses in two Swedish national health registers
  publication-title: Neuroepidemiology
  doi: 10.1159/000336356
– volume: 2
  start-page: 384
  year: 2015
  ident: ref26
  article-title: Estimating the Proportion of Essential Tremor and Parkinson’s Disease Patients Undergoing Deep Brain Stimulation Surgery: Five-Year Data From Columbia University Medical Center (2009–2014)
  publication-title: Mov Disord Clin Pract
  doi: 10.1002/mdc3.12185
– volume: 73
  start-page: 529
  year: 2002
  ident: ref48
  article-title: How valid is the clinical diagnosis of Parkinson’s disease in the community?
  publication-title: J Neurol Neurosurg Psychiatr
  doi: 10.1136/jnnp.73.5.529
– volume: 28
  start-page: 99
  year: 1999
  ident: ref33
  article-title: Accuracy of diagnosis in patients with presumed Parkinson’s disease
  publication-title: Age Ageing
  doi: 10.1093/ageing/28.2.99
– volume: 57
  start-page: 1497
  year: 2001
  ident: ref12
  article-title: Improved accuracy of clinical diagnosis of Lewy body Parkinson’s disease
  publication-title: Neurology
  doi: 10.1212/WNL.57.8.1497
– volume: 347
  start-page: 188
  year: 2014
  ident: ref37
  article-title: Under-reporting of Parkinson’s disease on death certificates: a population-based study (NEDICES)
  publication-title: J Neurol Sci
  doi: 10.1016/j.jns.2014.08.048
– volume: 339
  start-page: b2535
  year: 2009
  ident: ref19
  article-title: Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement
  publication-title: BMJ
  doi: 10.1136/bmj.b2535
– ident: ref9
– volume: 70
  start-page: 859
  year: 2013
  ident: ref35
  article-title: Incidence and pathology of synucleinopathies and tauopathies related to parkinsonism
  publication-title: JAMA Neurol
  doi: 10.1001/jamaneurol.2013.114
– volume: 55
  start-page: 723
  year: 2002
  ident: ref43
  article-title: Validity of hospital morbidity records for amyotrophic lateral sclerosis. A population-based study
  publication-title: J Clin Epidemiol
  doi: 10.1016/S0895-4356(02)00409-2
– volume: 15
  start-page: 331
  year: 2015
  ident: ref25
  article-title: Parkinson’s Disease Case Ascertainment in the EPIC Cohort: The NeuroEPIC4PD Study
  publication-title: Neurodegener Dis
  doi: 10.1159/000381857
– volume: 52
  start-page: 1214
  year: 1999
  ident: ref34
  article-title: Incidence and distribution of parkinsonism in Olmsted County, Minnesota, 1976–1990
  publication-title: Neurology
  doi: 10.1212/WNL.52.6.1214
– year: 2016
  ident: ref21
  article-title: The accuracy of electronic health datasets in identifying Parkinson’s disease cases: a systematic review
  publication-title: The accuracy of electronic health datasets in identifying Parkinson’s disease cases: a systematic review
– volume: 4
  start-page: 1
  year: 2015
  ident: ref20
  article-title: Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement
  publication-title: Syst Rev
  doi: 10.1186/2046-4053-4-1
– volume: 2015
  start-page: 781479
  year: 2015
  ident: ref30
  article-title: Medical Record Review to Differentiate between Idiopathic Parkinson’s Disease and Parkinsonism: A Danish Record Linkage Study with 10 Years of Follow-Up
  publication-title: Parkinsons Dis
– volume: 10
  year: 2015
  ident: ref14
  article-title: Accuracy of Electronic Health Record Data for Identifying Stroke Cases in Large-Scale Epidemiological Studies: A Systematic Review from the UK Biobank Stroke Outcomes Group
  publication-title: PLoS One
– volume: 155
  start-page: 529
  year: 2011
  ident: ref22
  article-title: QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies
  publication-title: Ann Intern Med
  doi: 10.7326/0003-4819-155-8-201110180-00009
– volume: 251
  start-page: vII14
  issue: Suppl 7
  year: 2004
  ident: ref32
  article-title: A prospective study of alcoholism and the risk of Parkinson’s disease
  publication-title: J Neurol
– volume: 53
  start-page: 521
  year: 1999
  ident: ref42
  article-title: Mortality in elderly Canadians with and without dementia: a 5-year follow-up
  publication-title: Neurology
  doi: 10.1212/WNL.53.3.521
– volume: 24
  start-page: 2379
  year: 2009
  ident: ref47
  article-title: Accuracy of Parkinson’s disease diagnosis in 610 general practice patients in the West of Scotland
  publication-title: Mov Disord
  doi: 10.1002/mds.22829
– volume: 21
  start-page: 1221
  year: 2006
  ident: ref45
  article-title: Use of antiparkinsonian drugs in Denmark: results from a nationwide pharmacoepidemiological study
  publication-title: Mov Disord
  doi: 10.1002/mds.20907
– volume: 19
  start-page: 29
  year: 2018
  ident: ref6
  article-title: Routinely collected data for randomized trials: promises, barriers, and implications
  publication-title: Trials
  doi: 10.1186/s13063-017-2394-5
– volume: 12
  start-page: e1001779
  year: 2015
  ident: ref2
  article-title: UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age
  publication-title: PLoS Med
  doi: 10.1371/journal.pmed.1001779
– volume: 12
  start-page: e1001885
  year: 2015
  ident: ref5
  article-title: The REporting of studies Conducted using Observational Routinely-collected health Data (RECORD) Statement
  publication-title: PLOS Med
  doi: 10.1371/journal.pmed.1001885
– volume: 47
  start-page: 589
  year: 2018
  ident: ref15
  article-title: Accuracy of death certification of dementia in population-based samples of older people: analysis over time
  publication-title: Age Ageing
  doi: 10.1093/ageing/afy068
– volume: 22
  start-page: 915
  year: 2007
  ident: ref31
  article-title: Identifying incident cases of parkinsonism among veterans using a tertiary medical center
  publication-title: Mov Disord
  doi: 10.1002/mds.21353
– volume: 3
  start-page: 507
  year: 2016
  ident: ref36
  article-title: Utility of electronic medical record for recruitment in clinical research: from rare to common disease
  publication-title: Mov Disord Clin Pract
  doi: 10.1002/mdc3.12318
– volume: 44
  start-page: 814
  year: 2011
  ident: ref44
  article-title: Validity of hospital discharge data for identifying cases of amyotrophic lateral sclerosis
  publication-title: Muscle Nerve
  doi: 10.1002/mus.22195
– volume: 125
  start-page: 861
  year: 2002
  ident: ref13
  article-title: The accuracy of diagnosis of parkinsonian syndromes in a specialist movement disorder service
  publication-title: Brain
  doi: 10.1093/brain/awf080
– volume: 29
  start-page: 371
  year: 2014
  ident: ref3
  article-title: The German National Cohort: aims, study design and organization
  publication-title: Eur J Epidemiol
  doi: 10.1007/s10654-014-9890-7
– volume: 33
  start-page: 660
  year: 2018
  ident: ref1
  article-title: Disease Modification in Parkinson’s Disease: Current Approaches, Challenges, and Future Considerations
  publication-title: Movement Disorders
  doi: 10.1002/mds.27360
– volume: 20
  start-page: 964
  year: 2005
  ident: ref27
  article-title: Identifying and distinguishing cases of parkinsonism and Parkinson’s disease using ICD-9 CM codes and pharmacy data
  publication-title: Mov Disord
  doi: 10.1002/mds.20479
– volume: 23
  start-page: e20
  year: 2016
  ident: ref29
  article-title: Combining billing codes, clinical notes, and medications from electronic health records provides superior phenotyping performance
  publication-title: J Am Med Inform Assoc
  doi: 10.1093/jamia/ocv130
– year: 1992
  ident: ref7
  article-title: The ICD-10 classification of mental and behavioural disorders: clinical descriptions and diagnostic guidelines
– volume: 65
  start-page: 343
  year: 2012
  ident: ref16
  article-title: Tradeoffs between accuracy measures for electronic health care data algorithms
  publication-title: J Clin Epidemiol
  doi: 10.1016/j.jclinepi.2011.09.002
– volume: 385
  start-page: 2448
  year: 2015
  ident: ref4
  article-title: Planning for US Precision Medicine Initiative underway
  publication-title: The Lancet
  doi: 10.1016/S0140-6736(15)61124-2
– ident: ref8
– volume: 12
  start-page: e0172639
  year: 2017
  ident: ref18
  article-title: Accuracy of routinely-collected healthcare data for identifying motor neurone disease cases: A systematic review
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0172639
– volume: 24
  start-page: 51
  year: 2009
  ident: ref28
  article-title: Optimizing algorithms to identify Parkinson’s disease cases within an administrative database
  publication-title: Mov Disord
  doi: 10.1002/mds.22283
– volume: 13
  start-page: 400
  year: 1998
  ident: ref46
  article-title: Prevalence of Parkinson’s disease in Northwestern Italy: comparison of tracer methodology and clinical ascertainment of cases
  publication-title: Mov Disord
  doi: 10.1002/mds.870130305
– volume: 18
  start-page: 1312
  year: 2003
  ident: ref39
  article-title: Survival time, mortality, and cause of death in elderly patients with Parkinson’s disease: a 9-year follow-up
  publication-title: Mov Disord
  doi: 10.1002/mds.10537
SSID ssj0053866
Score 2.4282002
SecondaryResourceType review_article
Snippet Population-based, prospective studies can provide important insights into Parkinson's disease (PD) and other parkinsonian disorders. Participant follow-up in...
Background Population-based, prospective studies can provide important insights into Parkinson's disease (PD) and other parkinsonian disorders. Participant...
We searched four electronic databases for published studies that compared PD and parkinsonism cases identified using routinely collected data to a reference...
Background Population-based, prospective studies can provide important insights into Parkinson’s disease (PD) and other parkinsonian disorders. Participant...
BackgroundPopulation-based, prospective studies can provide important insights into Parkinson's disease (PD) and other parkinsonian disorders. Participant...
Background Population-based, prospective studies can provide important insights into Parkinson’s disease (PD) and other parkinsonian disorders. Participant...
SourceID plos
doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0198736
SubjectTerms Accuracy
Algorithms
Amyotrophic lateral sclerosis
Analysis
Basal ganglia
Biology and Life Sciences
Brain diseases
Brain research
Central nervous system diseases
Database industry
Databases, Factual
Datasets
Dementia
Diagnostic systems
Drugs
Electronic Health Records
Female
Health care
Health informatics
Health sciences
Hospitals
Humans
Information management
Male
Medical care quality
Medical diagnosis
Medical literature
Medical records
Medicine and Health Sciences
Mortality
Movement disorders
Neurodegenerative diseases
Neurology
Parkinson disease
Parkinson Disease - epidemiology
Parkinson's disease
Parkinsonism
People and places
Population
Population studies
Primary Health Care
Prospective Studies
Sensitivity
Studies
Systematic review
Veterinary medicine
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQXuCCKK8GFjAIqXBIm9iJ7XBbEFVBAiSgqLfIdpy20pJdNbtC_ffM2N60EZXaA1f7y0qZl2c2M58JeW14acvcFKlpijItjGWpzkuVtqYyjdDOav9nzpev4uCw-HxUHl266gt7wgI9cBDcXpW7VnAJdYhoC64N5BsGzYgZxzTLDUbfTFWbYirEYPBiIeKgHJf5XtTL7nLRud0M62xPyXxxEHm-_iEqT5bzRX9Vyvlv5-TtdbfU53_0fH7pWNq_R-7GfJLOwntskVuuu0-2osf29E2klX77gKzDTK6fa6I47OznvnZ6Gr_RUN01dLlZP-1_UwurPcXO-GN6tgAL7dz8nKLlQJR0DT0ZescoNpq-ozN6QQxNw1DMQ3K4__Hnh4M0XrqQWlGxVWpYLlQmRVvaSjHTZtw0TYGsZExWDWNOIkObgzOtzQ2ke8ZxwdtGQi0HGMv4IzLpQMzbhBouhM40Fw3khcoohSN_KmONtq1rszwhfKOB2kZGcrwYY177z2wSKpMgxBr1Vke9JSQdnloGRo5r8O9RuQMW-bT9AlhZHa2svs7KEvICTaMOgh2iQj0rJWRUCmrchLzyCOTU6LBp51iv-77-9O3XDUA_vo9AOxHULkAcVsdBCXgn5OoaIacjJEQGO9reRkPeSKWvsfxkUqoMhDLdGPfV2y-HbfxRbMTr3GLtMZ7fpwDM4-ALg2TD8aGKhMiRl4xEP97pTk88pTmkvQUU3gnZHfzpRsp98j-U-5TcgTQY2wYhI5mSyeps7Z5Bqrkyz31U-QsbjX3d
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdG9wAvEysfCwwwCGnwkC5xEidFQqhDmwbSChps2ltkO043qSShaYX233PnOCkRE-zVvkTKffkuvvsdIa9lEKnIl6ErszByQ6mYK_wocXM5lhkXWgnzM-dkyo_Pws8X0cUGmba9MFhW2fpE46izUuE_8n0MnVkcJx7_UP10cWoU3q62IzSEHa2QvTcQY3fIJkNkrAHZPDicfj1tfTNYN-e2gS6I_X0rr1FVFnrkYf5toJrXB5TB8e-89aCal_VNoejfFZV3V0Ulrn-J-fyP4-roPtmycSadNIqxTTZ0MSTb1pJr-sbCTb8dkuE5VsSYtlx6Ym_aH5BV08FruqAotkabLrG9mtobHSqKjFbt-lX9gypYrSnW0c_oogR9LvT8mqKegU_VGb3sKs0olqW-oxO6hpGmTQvNQ3J2dPj947FrRzS4io_Z0pXM54kX8zxS44TJ3AtkloWIYcbiccaYjhHPTcMJmPsSgkOpAx7kWQyZH9AoFjwigwKYv0OoDDgXngh4BlFkIpMEGwQTj2VC5Tr3fIcErVxSZfHLcYzGPDWXcjHkMQ1rU5RmaqXpELd7qmrwO_5Df4Ai72gRfdsslItZao05Hfs650EMuTHPw0BIiIElujYmNRPMlw55gQqTNoztfEg6iWKIvxLIiB3yylAgAkeBJT4zsarr9NOX81sQfTvtEe1ZorwEdihh2yrgmxDZq0e526MEP6J62zuo3i1X6nRtcfBkq_I3b7_stvGlWLZX6HJlaAwaUAg0jxsL6TjbHDZJ6JC4Zzs91vd3iqtLA4AOQXIIabpDRp2V3Uq4T_79HU_JPQiHsXwQIpNdMlguVvoZhJxL-dz6kd-EL4Q5
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELXK9gAXoHx1YQGDEIVD0sROnITbgqgKEgUBRe0BRbbjtBVLdtVshMqB386M4wQCRZQDt5U9tjbP4_FMPPNCyAPFYx2HKvJUEcVepDTzZBinXqkyVQhptLQvc17tiO3d6OVevLdCPna1MA5BiBFn89re5OOPeWU2HZKbyFfU3p76IU_CboS_ACE_wBiai4eWcQjfjC2xAOkcWRUxuOojsrq782a63940M0-wgLtyuj_NNDiuLKt_b7tH-M9Oc0x_z68831QLefJFzmY_HV5bl8i37rHbnJVPfrNUvv76CyPkf8PlMrno3F46bWdZIyumukLWnGGp6SPHfv34Kmna0mFbfkWxJtuWp23U1F0lUVkVdNG1H9WfqYbWmmIC_wE9nsNGqszshKKCgzE3BT3sU9wo5sM-oVP6g7-atrU718ju1vP3z7Y9920IT4uMLT3FQpEGiShjnaVMlQFXRREheRpLsoIxkyCRnIGjtwwVeKXKcMHLIoGQE2Q049fJqAJk1glVXAgZSC4KcF9TlaZYmZgGrJC6NGUQjgnvVCDXjjgdv98xy-1tYAIBVAtijlDnDuox8fpRi5Y45C_yT1G7elmk_bYNsNa5W-M8C00peAJBuSgjLhUosUKbypRhkoVqTO6ibuYtsL3xyqdxAo5fCqH4mNy3Ekj9UWFu0YFs6jp_8frDGYTevR0IbTihcg5waOnqOeCZUBUHkpOBJBgwPeheR13uUKlzjJJZkqQBgDLpdtfp3ff6bpwU8wUrM2-sjKUhikDmRrsZe2TbUy6NxiQZbNMB9MOe6ujQMq-Ddx5lAub0-w19psW9-a8DbpEL4JljJiM4SRMyWh435jZ4v0t1x9mw72_Ktfo
  priority: 102
  providerName: Unpaywall
Title Identifying Parkinson's disease and parkinsonism cases using routinely collected healthcare data: A systematic review
URI https://www.ncbi.nlm.nih.gov/pubmed/30703084
https://www.proquest.com/docview/2174277806
https://www.proquest.com/docview/2179481546
https://pubmed.ncbi.nlm.nih.gov/PMC6354966
https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0198736&type=printable
https://doaj.org/article/91ef6378406f43ab932b10172be2a21b
http://dx.doi.org/10.1371/journal.pone.0198736
UnpaywallVersion publishedVersion
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: HH5
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20061001
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate - eBooks
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: ABDBF
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Food Science Source
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: A8Z
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DIK
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: GX1
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: RPM
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest One Academic
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8FG
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M48
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELe2ToK9IMbXAqUYhDR4SJU4iZ0gIdRNGwNpZRoUlafITpxuUklL0wr633PnfEBEJ_aSB_tcNee781189ztCXiovSAJX-bZK_cD2VcJs6QahnalIpVzqRJqPOWdDfjryP46D8Rape7ZWDCw2hnbYT2q0mPZ__Vi_A4V_a7o2CLde1J_Pct13MIr2-DbZgbMqwmYOZ35zrwDazXlVQHfdyl1yq9SD0G-dVQbSvzHcnfl0VmzySv9Nrry9yudy_VNOp3-dXCd3yZ3K5aSDUkb2yJbO75G9SqkL-qpCnn59n6zKsl1T-kSxHtqUhh0UtLrGoTJP6bwevyq-0wRGC4rJ8xO6mIEQ53q6pihcYEh1Si-b9DKKuahv6ID-wY6mZd3MAzI6Of5ydGpXfRnshEdsaSvm8tARPAuSKGQqczyVpj4ClzERpYxpgSBuGo69zFXgESrtcS9LBYR7QJMw7yHp5MDxfUKVx7l0pMdTcB1DFYZYFRg6LJVJpjPHtYhX70CcVKDl2DtjGpubOAHBS8nEGLcwrrbQInazal6CdvyH_hA3t6FFyG0zMFtM4kqD48jVGfcEBMQ88z2pwPFVaM-Y0kwyV1nkGYpGXDK2MRzxIBDgdIUQBlvkhaFA2I0c83omclUU8YdPX29A9PmiRXRQEWUzYEciq1oKeCeE82pRdluUYDyS1vQ-CnLNlSLGCJUJETrAlG4t3JunnzfT-KOYq5fr2crQGAggH2gelbrQcLbWLIuIlpa0WN-eya8uDeo5eMY-xOYW6Tf6dKPNfXztn3hCdsH9xXRB8ES6pLNcrPRTcDGXqke2xVjAMzxy8Xnyvkd2Do-H5xc989GmZ6wKjI2G54NvvwG8LYKa
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELem8jBeECsfKwxmEGjwkC5xEidFQqh8TC1bhwTb1LdgJ043qSSlaTX1n-Jv5M5xUiIm2Mte7Uuk3J1_vovvfibkhXT92HekZ8nE8y1PxswSjh9aqezJhAsVC_0zZ3TMB6fe57E_3iC_ql4YLKusMFEDdZLH-I98H0NnFgShzd_Nflp4axSerlZXaJRucahWl5CyFW-HH8G-Lxk7-HTyYWCZWwWsmPfYwpLM4SFk76kf90ImU9uVSeIh7RYLegljKkAKMgWgnToS4hmpXO6mSQDJCsjESHQAkH_LcwFLYP0E4zrBA-zg3LTnuYGzb7yhO8sz1bUxu9dE0OvtT98SUO8Frdk0L64KdP-u19xcZjOxuhTT6R-b4cFdcsdEsbRfut0W2VBZm2wZnCjoK0Nm_bpN2mdYb6ObfunInOPfI8uyP1j3WFFsvNY9aHsFNedFVGQJnVXjF8UPGsNoQbFKf0LnOayWTE1XFL0YEFsl9LyuY6NY9PqG9umapJqWDTr3yemNmOoBaWWg_G1Cpcu5sIXLE4hRQxmG2H4Y2iwRcapS2-kQt7JLFBt2dLykYxrpI78AsqRStRFaMzLW7BCrfmpWsoP8R_49mryWRW5vPZDPJ5GBiqjnqJS7AWTePPVcISHClgicTCommCM7ZBcdJioVWyNU1PcDiO5CyLc75LmWQH6PDAuIJmJZFNHwy9k1hL59bQjtGaE0B3XEwjRtwDchb1hDcqchCSgVN6a30b0rrRTRej3Dk5XLXz39rJ7Gl2JRYKbypZbRXEMeyDwsV0it2XIrC70OCRprp6H65kx2ca7p1SEE93oc3tmtV9m1jPvo39-xSzYHJ6Oj6Gh4fPiY3IbAGwsVIQbaIa3FfKmeQHC7kE81olDy_aYh7Dc3_bhI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELamIgEviJUfKwxmEGjwkLZxEidBQqgwqpWxgYBNfQt24nSTSlKaVlP_Nf467hwnJWKCvezVvkTK3fnzXXz3mZBn0vFiz5auJRPXs1wZM0vYXmClMpQJFyoW-mfO4RHfP3Y_jL3xBvlV9cJgWWWFiRqokzzGf-Q9DJ2Z7wd93ktNWcTnveGb2U8Lb5DCk9bqOo3SRQ7U6hzSt-L1aA9s_Zyx4ftv7_Ytc8OAFfOQLSzJbB5AJp96cRgwmfYdmSQuUnAxP0wYUz7SkSkA8NSWENtI5XAnTXxIXEAmRtIDgP9rvuOEWE7oj-tkD3CEc9Oq5_h2z3hGd5ZnqtvHTF-TQq-3Qn1jQL0vtGbTvLgo6P27dvPGMpuJ1bmYTv_YGIe3yS0T0dJB6YKbZENlbbJpMKOgLwyx9cs2aZ9g7Y1uAKaH5kz_DlmWvcK634piE7buR9stqDk7oiJL6KwaPyt-0BhGC4oV-xM6z2HlZGq6oujRgN4qoad1TRvFAthXdEDXhNW0bNa5S46vxFT3SCsD5W8RKh3ORV84PIF4NZBBgK2IQZ8lIk5V2rc7xKnsEsWGKR0v7JhG-vjPh4ypVG2E1oyMNTvEqp-alUwh_5F_iyavZZHnWw_k80lkYCMKbZVyx4csnKeuIyRE2xJBlEnFBLNlh-ygw0SlYmu0igaeD5FeALl3hzzVEsj1keGqmYhlUUSjTyeXEPr6pSG0a4TSHNQRC9PAAd-EHGINye2GJCBW3JjeQveutFJE67UNT1Yuf_H0k3oaX4oFgpnKl1pG8w65IHO_XCG1ZsttLXA7xG-snYbqmzPZ2ammWodw3A05vLNbr7JLGffBv79jh1wH8Io-jo4OHpKbEINjzSKEQ9uktZgv1SOIcxfysQYUSr5fNYL9BjeevIs
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELXK9gAXoHx1YQGDEIVD0sROnITbgqgKEgUBRe0BRbbjtBVLdtVshMqB386M4wQCRZQDt5U9tjbP4_FMPPNCyAPFYx2HKvJUEcVepDTzZBinXqkyVQhptLQvc17tiO3d6OVevLdCPna1MA5BiBFn89re5OOPeWU2HZKbyFfU3p76IU_CboS_ACE_wBiai4eWcQjfjC2xAOkcWRUxuOojsrq782a63940M0-wgLtyuj_NNDiuLKt_b7tH-M9Oc0x_z68831QLefJFzmY_HV5bl8i37rHbnJVPfrNUvv76CyPkf8PlMrno3F46bWdZIyumukLWnGGp6SPHfv34Kmna0mFbfkWxJtuWp23U1F0lUVkVdNG1H9WfqYbWmmIC_wE9nsNGqszshKKCgzE3BT3sU9wo5sM-oVP6g7-atrU718ju1vP3z7Y9920IT4uMLT3FQpEGiShjnaVMlQFXRREheRpLsoIxkyCRnIGjtwwVeKXKcMHLIoGQE2Q049fJqAJk1glVXAgZSC4KcF9TlaZYmZgGrJC6NGUQjgnvVCDXjjgdv98xy-1tYAIBVAtijlDnDuox8fpRi5Y45C_yT1G7elmk_bYNsNa5W-M8C00peAJBuSgjLhUosUKbypRhkoVqTO6ibuYtsL3xyqdxAo5fCqH4mNy3Ekj9UWFu0YFs6jp_8frDGYTevR0IbTihcg5waOnqOeCZUBUHkpOBJBgwPeheR13uUKlzjJJZkqQBgDLpdtfp3ff6bpwU8wUrM2-sjKUhikDmRrsZe2TbUy6NxiQZbNMB9MOe6ujQMq-Ddx5lAub0-w19psW9-a8DbpEL4JljJiM4SRMyWh435jZ4v0t1x9mw72_Ktfo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identifying+Parkinson%27s+disease+and+parkinsonism+cases+using+routinely+collected+healthcare+data%3A+A+systematic+review&rft.jtitle=PloS+one&rft.au=Harding%2C+Zoe&rft.au=Wilkinson%2C+Tim&rft.au=Stevenson%2C+Anna&rft.au=Horrocks%2C+Sophie&rft.date=2019-01-31&rft.eissn=1932-6203&rft.volume=14&rft.issue=1&rft.spage=e0198736&rft_id=info:doi/10.1371%2Fjournal.pone.0198736&rft_id=info%3Apmid%2F30703084&rft.externalDocID=30703084
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon