Identifying Parkinson's disease and parkinsonism cases using routinely collected healthcare data: A systematic review

Population-based, prospective studies can provide important insights into Parkinson's disease (PD) and other parkinsonian disorders. Participant follow-up in such studies is often achieved through linkage to routinely collected healthcare datasets. We systematically reviewed the published liter...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 14; no. 1; p. e0198736
Main Authors Harding, Zoe, Wilkinson, Tim, Stevenson, Anna, Horrocks, Sophie, Ly, Amanda, Schnier, Christian, Breen, David P., Rannikmäe, Kristiina, Sudlow, Cathie L. M.
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 31.01.2019
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0198736

Cover

More Information
Summary:Population-based, prospective studies can provide important insights into Parkinson's disease (PD) and other parkinsonian disorders. Participant follow-up in such studies is often achieved through linkage to routinely collected healthcare datasets. We systematically reviewed the published literature on the accuracy of these datasets for this purpose. We searched four electronic databases for published studies that compared PD and parkinsonism cases identified using routinely collected data to a reference standard. We extracted study characteristics and two accuracy measures: positive predictive value (PPV) and/or sensitivity. We identified 18 articles, resulting in 27 measures of PPV and 14 of sensitivity. For PD, PPV ranged from 56-90% in hospital datasets, 53-87% in prescription datasets, 81-90% in primary care datasets and was 67% in mortality datasets. Combining diagnostic and medication codes increased PPV. For parkinsonism, PPV ranged from 36-88% in hospital datasets, 40-74% in prescription datasets, and was 94% in mortality datasets. Sensitivity ranged from 15-73% in single datasets for PD and 43-63% in single datasets for parkinsonism. In many settings, routinely collected datasets generate good PPVs and reasonable sensitivities for identifying PD and parkinsonism cases. However, given the wide range of identified accuracy estimates, we recommend cohorts conduct their own context-specific validation studies if existing evidence is lacking. Further research is warranted to investigate primary care and medication datasets, and to develop algorithms that balance a high PPV with acceptable sensitivity.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-3
ObjectType-Evidence Based Healthcare-1
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ObjectType-Undefined-3
Competing Interests: The authors have declared that no competing interests exist.
ZH and TW are joint first authors
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0198736