A Data-Driven Algorithm Integrating Clinical and Laboratory Features for the Diagnosis and Prognosis of Necrotizing Enterocolitis

Necrotizing enterocolitis (NEC) is a major source of neonatal morbidity and mortality. Since there is no specific diagnostic test or risk of progression model available for NEC, the diagnosis and outcome prediction of NEC is made on clinical grounds. The objective in this study was to develop and va...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 9; no. 2; p. e89860
Main Authors Ji, Jun, Ling, Xuefeng B., Zhao, Yingzhen, Hu, Zhongkai, Zheng, Xiaolin, Xu, Zhening, Wen, Qiaojun, Kastenberg, Zachary J., Li, Ping, Abdullah, Fizan, Brandt, Mary L., Ehrenkranz, Richard A., Harris, Mary Catherine, Lee, Timothy C., Simpson, B. Joyce, Bowers, Corinna, Moss, R. Lawrence, Sylvester, Karl G.
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 28.02.2014
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0089860

Cover

More Information
Summary:Necrotizing enterocolitis (NEC) is a major source of neonatal morbidity and mortality. Since there is no specific diagnostic test or risk of progression model available for NEC, the diagnosis and outcome prediction of NEC is made on clinical grounds. The objective in this study was to develop and validate new NEC scoring systems for automated staging and prognostic forecasting. A six-center consortium of university based pediatric teaching hospitals prospectively collected data on infants under suspicion of having NEC over a 7-year period. A database comprised of 520 infants was utilized to develop the NEC diagnostic and prognostic models by dividing the entire dataset into training and testing cohorts of demographically matched subjects. Developed on the training cohort and validated on the blind testing cohort, our multivariate analyses led to NEC scoring metrics integrating clinical data. Machine learning using clinical and laboratory results at the time of clinical presentation led to two nec models: (1) an automated diagnostic classification scheme; (2) a dynamic prognostic method for risk-stratifying patients into low, intermediate and high NEC scores to determine the risk for disease progression. We submit that dynamic risk stratification of infants with NEC will assist clinicians in determining the need for additional diagnostic testing and guide potential therapies in a dynamic manner. http://translationalmedicine.stanford.edu/cgi-bin/NEC/index.pl and smartphone application upon request.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
Conceived and designed the experiments: XBL KGS JJ YZ. Performed the experiments: JJ XBL YZ. Analyzed the data: JJ XBL YZ. Contributed reagents/materials/analysis tools: YZ ZH XZ ZX ZJK JJ XBL. Wrote the paper: XBL JJ KGS ZJK QW PL. Interpretation of results: FA MLB RAE MCH TCL BJS CB RLM. Involved in critical revisions: JJ XBL YZ ZH XZ ZX QW ZJK PL FA MLB RAE MCH TCL BJS CB RLM KGS.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0089860