A fast structural multiple alignment method for long RNA sequences

Background Aligning multiple RNA sequences is essential for analyzing non-coding RNAs. Although many alignment methods for non-coding RNAs, including Sankoff's algorithm for strict structural alignments, have been proposed, they are either inaccurate or computationally too expensive. Faster met...

Full description

Saved in:
Bibliographic Details
Published inBMC bioinformatics Vol. 9; no. 1; p. 33
Main Authors Tabei, Yasuo, Kiryu, Hisanori, Kin, Taishin, Asai, Kiyoshi
Format Journal Article
LanguageEnglish
Published London BioMed Central 23.01.2008
BioMed Central Ltd
BMC
Subjects
Online AccessGet full text
ISSN1471-2105
1471-2105
DOI10.1186/1471-2105-9-33

Cover

More Information
Summary:Background Aligning multiple RNA sequences is essential for analyzing non-coding RNAs. Although many alignment methods for non-coding RNAs, including Sankoff's algorithm for strict structural alignments, have been proposed, they are either inaccurate or computationally too expensive. Faster methods with reasonable accuracies are required for genome-scale analyses. Results We propose a fast algorithm for multiple structural alignments of RNA sequences that is an extension of our pairwise structural alignment method (implemented in SCARNA). The accuracies of the implemented software, MXSCARNA, are at least as favorable as those of state-of-art algorithms that are computationally much more expensive in time and memory. Conclusion The proposed method for structural alignment of multiple RNA sequences is fast enough for large-scale analyses with accuracies at least comparable to those of existing algorithms. The source code of MXSCARNA and its web server are available at http://mxscarna.ncrna.org .
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1471-2105
1471-2105
DOI:10.1186/1471-2105-9-33