A machine learning approach for the prediction of pulmonary hypertension

Machine learning (ML) is a powerful tool for identifying and structuring several informative variables for predictive tasks. Here, we investigated how ML algorithms may assist in echocardiographic pulmonary hypertension (PH) prediction, where current guidelines recommend integrating several echocard...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 14; no. 10; p. e0224453
Main Authors Leha, Andreas, Hellenkamp, Kristian, Unsöld, Bernhard, Mushemi-Blake, Sitali, Shah, Ajay M., Hasenfuß, Gerd, Seidler, Tim
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 25.10.2019
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0224453

Cover

More Information
Summary:Machine learning (ML) is a powerful tool for identifying and structuring several informative variables for predictive tasks. Here, we investigated how ML algorithms may assist in echocardiographic pulmonary hypertension (PH) prediction, where current guidelines recommend integrating several echocardiographic parameters. In our database of 90 patients with invasively determined pulmonary artery pressure (PAP) with corresponding echocardiographic estimations of PAP obtained within 24 hours, we trained and applied five ML algorithms (random forest of classification trees, random forest of regression trees, lasso penalized logistic regression, boosted classification trees, support vector machines) using a 10 times 3-fold cross-validation (CV) scheme. ML algorithms achieved high prediction accuracies: support vector machines (AUC 0.83; 95% CI 0.73-0.93), boosted classification trees (AUC 0.80; 95% CI 0.68-0.92), lasso penalized logistic regression (AUC 0.78; 95% CI 0.67-0.89), random forest of classification trees (AUC 0.85; 95% CI 0.75-0.95), random forest of regression trees (AUC 0.87; 95% CI 0.78-0.96). In contrast to the best of several conventional formulae (by Aduen et al.), this ML algorithm is based on several echocardiographic signs and feature selection, with estimated right atrial pressure (RAP) being of minor importance. Using ML, we were able to predict pulmonary hypertension based on a broader set of echocardiographic data with little reliance on estimated RAP compared to an existing formula with non-inferior performance. With the conceptual advantages of a broader and unbiased selection and weighting of data our ML approach is suited for high level assistance in PH prediction.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0224453