Glycemic-aware metrics and oversampling techniques for predicting blood glucose levels using machine learning

Techniques using machine learning for short term blood glucose level prediction in patients with Type 1 Diabetes are investigated. This problem is significant for the development of effective artificial pancreas technology so accurate alerts (e.g. hypoglycemia alarms) and other forecasts can be gene...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 14; no. 12; p. e0225613
Main Authors Mayo, Michael, Chepulis, Lynne, Paul, Ryan G.
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 02.12.2019
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0225613

Cover

More Information
Summary:Techniques using machine learning for short term blood glucose level prediction in patients with Type 1 Diabetes are investigated. This problem is significant for the development of effective artificial pancreas technology so accurate alerts (e.g. hypoglycemia alarms) and other forecasts can be generated. It is shown that two factors must be considered when selecting the best machine learning technique for blood glucose level regression: (i) the regression model performance metrics being used to select the model, and (ii) the preprocessing techniques required to account for the imbalanced time spent by patients in different portions of the glycemic range. Using standard benchmark data, it is demonstrated that different regression model/preprocessing technique combinations exhibit different accuracies depending on the glycemic subrange under consideration. Therefore technique selection depends on the type of alert required. Specific findings are that a linear Support Vector Regression-based model, trained with normal as well as polynomial features, is best for blood glucose level forecasting in the normal and hyperglycemic ranges while a Multilayer Perceptron trained on oversampled data is ideal for predictions in the hypoglycemic range.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0225613