Robust optical flow algorithm for general single cell segmentation
Cell segmentation is crucial to the field of cell biology, as the accurate extraction of single-cell morphology, migration, and ultimately behavior from time-lapse live cell imagery are of paramount importance to elucidate and understand basic cellular processes. In an effort to increase available s...
Saved in:
| Published in | PloS one Vol. 17; no. 1; p. e0261763 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Public Library of Science
14.01.2022
Public Library of Science (PLoS) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1932-6203 1932-6203 |
| DOI | 10.1371/journal.pone.0261763 |
Cover
| Abstract | Cell segmentation is crucial to the field of cell biology, as the accurate extraction of single-cell morphology, migration, and ultimately behavior from time-lapse live cell imagery are of paramount importance to elucidate and understand basic cellular processes. In an effort to increase available segmentation tools that can perform across research groups and platforms, we introduce a novel segmentation approach centered around optical flow and show that it achieves robust segmentation of single cells by validating it on multiple cell types, phenotypes, optical modalities, and
in-vitro
environments with or without labels. By leveraging cell movement in time-lapse imagery as a means to distinguish cells from their background and augmenting the output with machine vision operations, our algorithm reduces the number of adjustable parameters needed for manual optimization to two. We show that this approach offers the advantage of quicker processing times compared to contemporary machine learning based methods that require manual labeling for training, and in most cases achieves higher quality segmentation as well. This algorithm is packaged within MATLAB, offering an accessible means for general cell segmentation in a time-efficient manner. |
|---|---|
| AbstractList | Cell segmentation is crucial to the field of cell biology, as the accurate extraction of single-cell morphology, migration, and ultimately behavior from time-lapse live cell imagery are of paramount importance to elucidate and understand basic cellular processes. In an effort to increase available segmentation tools that can perform across research groups and platforms, we introduce a novel segmentation approach centered around optical flow and show that it achieves robust segmentation of single cells by validating it on multiple cell types, phenotypes, optical modalities, and in-vitro environments with or without labels. By leveraging cell movement in time-lapse imagery as a means to distinguish cells from their background and augmenting the output with machine vision operations, our algorithm reduces the number of adjustable parameters needed for manual optimization to two. We show that this approach offers the advantage of quicker processing times compared to contemporary machine learning based methods that require manual labeling for training, and in most cases achieves higher quality segmentation as well. This algorithm is packaged within MATLAB, offering an accessible means for general cell segmentation in a time-efficient manner. Cell segmentation is crucial to the field of cell biology, as the accurate extraction of single-cell morphology, migration, and ultimately behavior from time-lapse live cell imagery are of paramount importance to elucidate and understand basic cellular processes. In an effort to increase available segmentation tools that can perform across research groups and platforms, we introduce a novel segmentation approach centered around optical flow and show that it achieves robust segmentation of single cells by validating it on multiple cell types, phenotypes, optical modalities, and in-vitro environments with or without labels. By leveraging cell movement in time-lapse imagery as a means to distinguish cells from their background and augmenting the output with machine vision operations, our algorithm reduces the number of adjustable parameters needed for manual optimization to two. We show that this approach offers the advantage of quicker processing times compared to contemporary machine learning based methods that require manual labeling for training, and in most cases achieves higher quality segmentation as well. This algorithm is packaged within MATLAB, offering an accessible means for general cell segmentation in a time-efficient manner. Cell segmentation is crucial to the field of cell biology, as the accurate extraction of single-cell morphology, migration, and ultimately behavior from time-lapse live cell imagery are of paramount importance to elucidate and understand basic cellular processes. In an effort to increase available segmentation tools that can perform across research groups and platforms, we introduce a novel segmentation approach centered around optical flow and show that it achieves robust segmentation of single cells by validating it on multiple cell types, phenotypes, optical modalities, and in-vitro environments with or without labels. By leveraging cell movement in time-lapse imagery as a means to distinguish cells from their background and augmenting the output with machine vision operations, our algorithm reduces the number of adjustable parameters needed for manual optimization to two. We show that this approach offers the advantage of quicker processing times compared to contemporary machine learning based methods that require manual labeling for training, and in most cases achieves higher quality segmentation as well. This algorithm is packaged within MATLAB, offering an accessible means for general cell segmentation in a time-efficient manner.Cell segmentation is crucial to the field of cell biology, as the accurate extraction of single-cell morphology, migration, and ultimately behavior from time-lapse live cell imagery are of paramount importance to elucidate and understand basic cellular processes. In an effort to increase available segmentation tools that can perform across research groups and platforms, we introduce a novel segmentation approach centered around optical flow and show that it achieves robust segmentation of single cells by validating it on multiple cell types, phenotypes, optical modalities, and in-vitro environments with or without labels. By leveraging cell movement in time-lapse imagery as a means to distinguish cells from their background and augmenting the output with machine vision operations, our algorithm reduces the number of adjustable parameters needed for manual optimization to two. We show that this approach offers the advantage of quicker processing times compared to contemporary machine learning based methods that require manual labeling for training, and in most cases achieves higher quality segmentation as well. This algorithm is packaged within MATLAB, offering an accessible means for general cell segmentation in a time-efficient manner. |
| Audience | Academic |
| Author | Byers, Jeff M. Raphael, Marc P. Robitaille, Michael C. Christodoulides, Joseph A. |
| AuthorAffiliation | Sun Yat-Sen University, CHINA Materials Science and Technology Division, U.S. Naval Research Laboratory, Washington, DC, United States of America |
| AuthorAffiliation_xml | – name: Sun Yat-Sen University, CHINA – name: Materials Science and Technology Division, U.S. Naval Research Laboratory, Washington, DC, United States of America |
| Author_xml | – sequence: 1 givenname: Michael C. surname: Robitaille fullname: Robitaille, Michael C. – sequence: 2 givenname: Jeff M. surname: Byers fullname: Byers, Jeff M. – sequence: 3 givenname: Joseph A. surname: Christodoulides fullname: Christodoulides, Joseph A. – sequence: 4 givenname: Marc P. orcidid: 0000-0003-1794-5193 surname: Raphael fullname: Raphael, Marc P. |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35030184$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkttq3DAQhk1JaQ7tG5TWUCjtxW4ly5LtXhTS0MNCIJAebsVYB68W2dpKdtO8feWuE9Yh0OALi9E3v-afmePkoHOdSpLnGC0xKfC7jRt8B3a5jeElyhguGHmUHOGKZAuWIXKwdz5MjkPYIERJydiT5JBQRBAu86Pk46Wrh9CnbtsbATbV1l2lYBvnTb9uU-182qhO-XgVTNdYlQpl41k1rep66I3rniaPNdignk3_k-TH50_fz74uzi--rM5OzxeCVVm_oFDUJcZCYlZWmaQSlzXBGKDOqgJrkLKkKFcgMlHXec4KorMKqKCqFFTTmpwkL3e6W-sCn-wHHp1XBcmzoorEakdIBxu-9aYFf80dGP4v4HzDwUefVnFWQ60FzdjYBslkqUUuayryCkldyPE1utMaui1cX4G1t4IY8XECNyXwcQJ8mkDM-zBVOdStkiJ2yYOdFTO_6cyaN-43LwtaMUKjwJtJwLtfgwo9b00Ymw6dcsPoN0OoxDTHEX11B72_KxPVQDRuOu3iu2IU5adxFJRSQlmklvdQ8ZOqNSI61CbGZwlvZwmR6dWfvoEhBL76dvlw9uLnnH29x64V2H4dnB3GVQtz8MV-p29bfLPcEXi_A4R3IXiluTC7lY3WjP3fHPM7yQ8a_19aSyJC |
| CitedBy_id | crossref_primary_10_1016_j_asej_2024_102981 crossref_primary_10_1016_j_optlastec_2024_111992 crossref_primary_10_1021_acsaenm_4c00613 crossref_primary_10_3788_LOP222437 crossref_primary_10_1093_synbio_ysad001 crossref_primary_10_1038_s42003_022_04117_x |
| Cites_doi | 10.1016/j.softx.2019.02.007 10.1242/jcs.00383 10.1016/j.ejcb.2005.09.011 10.1145/212094.212141 10.1038/s41598-020-61808-3 10.1016/j.media.2018.09.001 10.1016/j.jvcir.2013.12.002 10.1083/jcb.200810041 10.1186/s12859-014-0431-x 10.1242/dev.108.4.635 10.1093/bioinformatics/btx107 10.1038/4661137a 10.1109/MSP.2012.2204190 10.1038/ncb3495 10.1038/s41592-018-0111-2 10.1371/journal.pcbi.1007673 10.1038/s41592-018-0261-2 10.1007/s10439-010-0005-7 10.1016/B978-0-12-391856-7.00039-1 10.1186/s12859-019-2880-8 10.1186/1559-4106-8-28 10.1557/mrc.2018.2 10.1016/0014-4827(75)90636-9 10.1186/gb-2006-7-10-r100 10.1016/j.tcb.2015.09.003 10.1186/s12859-018-2375-z 10.1002/cm.20015 10.1038/s41598-019-40092-w 10.1038/s41592-020-01018-x 10.1007/s00138-011-0362-8 10.1038/nmeth.4397 10.1038/srep14580 10.1038/s41592-019-0670-x 10.1007/3-540-45103-X_50 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2022 Public Library of Science This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2022 Public Library of Science – notice: This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PTHSS PYCSY RC3 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1371/journal.pone.0261763 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts ProQuest Nursing & Allied Health Database (NC LIVE) Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection ProQuest Public Health Database (NC LIVE) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Biological Science Collection ProQuest Central Technology Collection ProQuest Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agriculture Science Database Health & Medical Collection (Alumni Edition) Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) ProQuest Biological Science Database (NC LIVE) Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database (Proquest) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic Agricultural Science Database MEDLINE |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| DocumentTitleAlternate | Robust optical flow algorithm for general single cell segmentation |
| EISSN | 1932-6203 |
| ExternalDocumentID | 2619734279 oai_doaj_org_article_6babfc5260184d6d8fc4db5c490df7db 10.1371/journal.pone.0261763 PMC8759635 A689555356 35030184 10_1371_journal_pone_0261763 |
| Genre | Journal Article |
| GeographicLocations | United States United States--US |
| GeographicLocations_xml | – name: United States – name: United States--US |
| GrantInformation_xml | – fundername: ; grantid: Karles Fellowship – fundername: ; grantid: BioControl IV&V – fundername: ; grantid: Basic Research Program – fundername: ; grantid: NRC Fellowship |
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESTFP ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PUEGO PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM 3V. ADRAZ ALIPV BBORY CGR CUY CVF ECM EIF IPNFZ NPM RIG 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI RC3 7X8 5PM ADTOC UNPAY AAPBV ABPTK |
| ID | FETCH-LOGICAL-c692t-5a7b811cd16892d5d18b311aab2971fadd8504eac2cbb44673f29a5c5e8c5f5b3 |
| IEDL.DBID | UNPAY |
| ISSN | 1932-6203 |
| IngestDate | Sun Oct 01 00:11:23 EDT 2023 Fri Oct 03 12:50:46 EDT 2025 Sun Oct 26 04:13:26 EDT 2025 Tue Sep 30 16:55:38 EDT 2025 Mon Sep 08 11:44:12 EDT 2025 Tue Oct 07 07:53:34 EDT 2025 Mon Oct 20 22:15:13 EDT 2025 Mon Oct 20 16:39:24 EDT 2025 Thu Oct 16 15:00:19 EDT 2025 Thu Oct 16 15:27:51 EDT 2025 Thu May 22 21:09:43 EDT 2025 Wed Feb 19 02:27:02 EST 2025 Wed Oct 01 01:48:53 EDT 2025 Thu Apr 24 22:50:39 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication. cc-by Creative Commons CC0 public domain |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c692t-5a7b811cd16892d5d18b311aab2971fadd8504eac2cbb44673f29a5c5e8c5f5b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: The authors have declared that no competing interests exist. |
| ORCID | 0000-0003-1794-5193 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0261763&type=printable |
| PMID | 35030184 |
| PQID | 2619734279 |
| PQPubID | 1436336 |
| PageCount | e0261763 |
| ParticipantIDs | plos_journals_2619734279 doaj_primary_oai_doaj_org_article_6babfc5260184d6d8fc4db5c490df7db unpaywall_primary_10_1371_journal_pone_0261763 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8759635 proquest_miscellaneous_2620081541 proquest_journals_2619734279 gale_infotracmisc_A689555356 gale_infotracacademiconefile_A689555356 gale_incontextgauss_ISR_A689555356 gale_incontextgauss_IOV_A689555356 gale_healthsolutions_A689555356 pubmed_primary_35030184 crossref_citationtrail_10_1371_journal_pone_0261763 crossref_primary_10_1371_journal_pone_0261763 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-01-14 |
| PublicationDateYYYYMMDD | 2022-01-14 |
| PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-14 day: 14 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
| PublicationTitle | PloS one |
| PublicationTitleAlternate | PLoS One |
| PublicationYear | 2022 |
| Publisher | Public Library of Science Public Library of Science (PLoS) |
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
| References | AE Carpenter (pone.0261763.ref008) 2006; 7 Y Al-Kofahi (pone.0261763.ref011) 2018; 19 P Clark (pone.0261763.ref036) 1990; 108 P Masuzzo (pone.0261763.ref002) 2016; 26 AD Doyle (pone.0261763.ref031) 2009; 184 (pone.0261763.ref016) 2019; 16 C Xu (pone.0261763.ref022) 2018; 50 T Vicar (pone.0261763.ref007) 2019; 20 T Falk (pone.0261763.ref012) 2019; 16 J Delpiano (pone.0261763.ref019) 2012; 23 K Liu (pone.0261763.ref021) 2014 pone.0261763.ref026 J Chalfoun (pone.0261763.ref009) 2014; 15 M Buibas (pone.0261763.ref018) 2010; 38 MC Robitaille (pone.0261763.ref037) LR Flores (pone.0261763.ref006) 2019; 9 K Klein (pone.0261763.ref030) 2013; 8 SI Fraley (pone.0261763.ref034) 2015; 5 E. Meijering (pone.0261763.ref003) 2012; 29 C Stringer (pone.0261763.ref040) 2021; 18 J-B Lugagne (pone.0261763.ref013) 2020; 16 AI Teixeira (pone.0261763.ref035) 2003; 116 J-Y Tinevez (pone.0261763.ref005) 2012; 506 C Ounkomol (pone.0261763.ref017) 2018; 15 M Möller (pone.0261763.ref023) 2014; 25 EA Cavalcanti-Adam (pone.0261763.ref032) 2006; 85 H-F Tsai (pone.0261763.ref004) 2019; 9 JA Christodoulides (pone.0261763.ref033) 2018; 8 N Moshkov (pone.0261763.ref014) 2020; 10 JC Caicedo (pone.0261763.ref038) 2017; 14 O Hilsenbeck (pone.0261763.ref010) 2017; 33 Y Miao (pone.0261763.ref027) 2017; 19 M. Baker (pone.0261763.ref001) 2010; 466 SS Beauchemin (pone.0261763.ref024) 1995; 27 BD Lucas (pone.0261763.ref025) 1981 Y Asano (pone.0261763.ref028) 2004; 59 M Abercrombie (pone.0261763.ref029) 1975; 92 T Zhao (pone.0261763.ref015) 2020 S Berg (pone.0261763.ref039) 2019 R Lee (pone.0261763.ref020) 2020 |
| References_xml | – volume-title: 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI) year: 2014 ident: pone.0261763.ref021 – volume: 9 start-page: 230 year: 2019 ident: pone.0261763.ref004 article-title: Usiigaci: Instance-aware cell tracking in stain-free phase contrast microscopy enabled by machine learning publication-title: SoftwareX doi: 10.1016/j.softx.2019.02.007 – volume: 116 start-page: 1881 issue: 10 year: 2003 ident: pone.0261763.ref035 article-title: Epithelial contact guidance on well-defined micro-and nanostructured substrates publication-title: Journal of cell science doi: 10.1242/jcs.00383 – volume: 85 start-page: 219 issue: 3–4 year: 2006 ident: pone.0261763.ref032 article-title: Lateral spacing of integrin ligands influences cell spreading and focal adhesion assembly publication-title: European journal of cell biology doi: 10.1016/j.ejcb.2005.09.011 – volume: 27 start-page: 433 issue: 3 year: 1995 ident: pone.0261763.ref024 article-title: The computation of optical flow publication-title: ACM computing surveys (CSUR) doi: 10.1145/212094.212141 – volume: 10 start-page: 1 issue: 1 year: 2020 ident: pone.0261763.ref014 article-title: Test-time augmentation for deep learning-based cell segmentation on microscopy images publication-title: Scientific reports doi: 10.1038/s41598-020-61808-3 – volume: 50 start-page: 82 year: 2018 ident: pone.0261763.ref022 article-title: Direct delineation of myocardial infarction without contrast agents using a joint motion feature learning architecture publication-title: Medical image analysis doi: 10.1016/j.media.2018.09.001 – volume: 25 start-page: 396 issue: 2 year: 2014 ident: pone.0261763.ref023 article-title: A framework for automated cell tracking in phase contrast microscopic videos based on normal velocities publication-title: Journal of Visual Communication and Image Representation doi: 10.1016/j.jvcir.2013.12.002 – volume: 184 start-page: 481 issue: 4 year: 2009 ident: pone.0261763.ref031 article-title: One-dimensional topography underlies three-dimensional fibrillar cell migration publication-title: Journal of cell biology doi: 10.1083/jcb.200810041 – start-page: 1 ident: pone.0261763.ref037 article-title: Monolithic quartz platform for cellular contact guidance publication-title: MRS Communications – start-page: 1 year: 2019 ident: pone.0261763.ref039 article-title: Ilastik: interactive machine learning for (bio) image analysis publication-title: Nature Methods – volume: 15 start-page: 1 issue: 1 year: 2014 ident: pone.0261763.ref009 article-title: FogBank: a single cell segmentation across multiple cell lines and image modalities publication-title: Bmc Bioinformatics doi: 10.1186/s12859-014-0431-x – year: 2020 ident: pone.0261763.ref015 article-title: Weakly Supervised Cell Segmentation by Point Annotation publication-title: IEEE Transactions on Medical Imaging – volume: 108 start-page: 635 issue: 4 year: 1990 ident: pone.0261763.ref036 article-title: Topographical control of cell behaviour: II. Multiple grooved substrata publication-title: Development doi: 10.1242/dev.108.4.635 – volume: 33 start-page: 2020 issue: 13 year: 2017 ident: pone.0261763.ref010 article-title: fastER: a user-friendly tool for ultrafast and robust cell segmentation in large-scale microscopy publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx107 – volume: 466 start-page: 1137 issue: 7310 year: 2010 ident: pone.0261763.ref001 article-title: Taking a long, hard look publication-title: Nature doi: 10.1038/4661137a – volume: 29 start-page: 140 issue: 5 year: 2012 ident: pone.0261763.ref003 article-title: Cell segmentation: 50 years down the road [life sciences] publication-title: IEEE Signal Processing Magazine doi: 10.1109/MSP.2012.2204190 – volume: 19 start-page: 329 issue: 4 year: 2017 ident: pone.0261763.ref027 article-title: Altering the threshold of an excitable signal transduction network changes cell migratory modes publication-title: Nature cell biology doi: 10.1038/ncb3495 – volume: 15 start-page: 917 issue: 11 year: 2018 ident: pone.0261763.ref017 article-title: Label-free prediction of three-dimensional fluorescence images from transmitted-light microscopy publication-title: Nature methods doi: 10.1038/s41592-018-0111-2 – volume: 16 start-page: e1007673 issue: 4 year: 2020 ident: pone.0261763.ref013 article-title: DeLTA: Automated cell segmentation, tracking, and lineage reconstruction using deep learning publication-title: PLoS computational biology doi: 10.1371/journal.pcbi.1007673 – volume: 16 start-page: 67 issue: 1 year: 2019 ident: pone.0261763.ref012 article-title: U-Net: deep learning for cell counting, detection, and morphometry publication-title: Nature methods doi: 10.1038/s41592-018-0261-2 – volume: 38 start-page: 2520 issue: 8 year: 2010 ident: pone.0261763.ref018 article-title: Mapping the spatiotemporal dynamics of calcium signaling in cellular neural networks using optical flow publication-title: Annals of biomedical engineering doi: 10.1007/s10439-010-0005-7 – year: 2020 ident: pone.0261763.ref020 article-title: Quantifying topography-guided actin dynamics across scales using optical flow publication-title: Molecular Biology of the Cell – volume: 506 start-page: 291 year: 2012 ident: pone.0261763.ref005 article-title: A quantitative method for measuring phototoxicity of a live cell imaging microscope publication-title: Methods in enzymology doi: 10.1016/B978-0-12-391856-7.00039-1 – volume: 20 start-page: 360 issue: 1 year: 2019 ident: pone.0261763.ref007 article-title: Cell segmentation methods for label-free contrast microscopy: review and comprehensive comparison publication-title: BMC bioinformatics doi: 10.1186/s12859-019-2880-8 – volume: 8 start-page: 28 issue: 1 year: 2013 ident: pone.0261763.ref030 article-title: Cell membrane topology analysis by RICM enables marker-free adhesion strength quantification publication-title: Biointerphases doi: 10.1186/1559-4106-8-28 – volume: 8 start-page: 49 issue: 1 year: 2018 ident: pone.0261763.ref033 article-title: Nanostructured substrates for multi-cue investigations of single cells publication-title: MRS Communications doi: 10.1557/mrc.2018.2 – volume: 92 start-page: 57 issue: 1 year: 1975 ident: pone.0261763.ref029 article-title: Adhesions of fibroblasts to substratum during contact inhibition observed by interference reflection microscopy publication-title: Experimental cell research doi: 10.1016/0014-4827(75)90636-9 – volume: 7 start-page: R100 issue: 10 year: 2006 ident: pone.0261763.ref008 article-title: CellProfiler: image analysis software for identifying and quantifying cell phenotypes publication-title: Genome biology doi: 10.1186/gb-2006-7-10-r100 – volume: 26 start-page: 88 issue: 2 year: 2016 ident: pone.0261763.ref002 article-title: Taking aim at moving targets in computational cell migration publication-title: Trends in cell biology doi: 10.1016/j.tcb.2015.09.003 – volume: 19 start-page: 365 issue: 1 year: 2018 ident: pone.0261763.ref011 article-title: A deep learning-based algorithm for 2-D cell segmentation in microscopy images publication-title: BMC bioinformatics doi: 10.1186/s12859-018-2375-z – year: 1981 ident: pone.0261763.ref025 publication-title: An iterative image registration technique with an application to stereo vision – volume: 59 start-page: 17 issue: 1 year: 2004 ident: pone.0261763.ref028 article-title: Keratocyte-like locomotion in amiB-null Dictyostelium cells publication-title: Cell motility and the cytoskeleton doi: 10.1002/cm.20015 – volume: 9 start-page: 3241 issue: 1 year: 2019 ident: pone.0261763.ref006 article-title: Lifeact-GFP alters F-actin organization, cellular morphology and biophysical behaviour publication-title: Scientific reports doi: 10.1038/s41598-019-40092-w – volume: 18 start-page: 100 issue: 1 year: 2021 ident: pone.0261763.ref040 article-title: Cellpose: a generalist algorithm for cellular segmentation publication-title: Nature Methods doi: 10.1038/s41592-020-01018-x – volume: 23 start-page: 675 issue: 4 year: 2012 ident: pone.0261763.ref019 article-title: Performance of optical flow techniques for motion analysis of fluorescent point signals in confocal microscopy publication-title: Machine Vision and Applications doi: 10.1007/s00138-011-0362-8 – volume: 14 start-page: 849 issue: 9 year: 2017 ident: pone.0261763.ref038 article-title: Data-analysis strategies for image-based cell profiling publication-title: Nature methods doi: 10.1038/nmeth.4397 – volume: 5 start-page: 1 issue: 1 year: 2015 ident: pone.0261763.ref034 article-title: Three-dimensional matrix fiber alignment modulates cell migration and MT1-MMP utility by spatially and temporally directing protrusions publication-title: Scientific reports doi: 10.1038/srep14580 – volume: 16 start-page: 1195 issue: 12 year: 2019 ident: pone.0261763.ref016 article-title: Deep learning gets scope time publication-title: Nature Methods doi: 10.1038/s41592-019-0670-x – ident: pone.0261763.ref026 doi: 10.1007/3-540-45103-X_50 |
| SSID | ssj0053866 |
| Score | 2.4365213 |
| Snippet | Cell segmentation is crucial to the field of cell biology, as the accurate extraction of single-cell morphology, migration, and ultimately behavior from... |
| SourceID | plos doaj unpaywall pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | e0261763 |
| SubjectTerms | Algorithms Analysis Biology and Life Sciences Cell migration Cell morphology Cell separation Cells Computer and Information Sciences Cytology Datasets Deep learning Evaluation Image Processing, Computer-Assisted Image segmentation Labels Laboratories Learning algorithms Machine learning Machine vision Materials science Medicine and Health Sciences Microscopy Optical flow (image analysis) Optimization Phenotypes Physical Sciences Research and Analysis Methods Robustness Single-Cell Analysis Social Sciences Software Structure |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9RAFB5kX_RFrLemVh1FUB-yzdyTx1YsVVChWulbmEtmW0iTpdml-O-dk8yGBgvtg6-ZL0tybjln9pxvEHpHZE59URVpeMoi5c7bFNLylHHKpRNEcwUDzt--y6MT_vVUnF476gt6wgZ64EFwe9Jo460A5qucO-lyb7kzwvIic145A9E3y4tNMTXE4ODFUsZBOabIXtTLfNk21bwnIZds8iHq-frHqDxb1m13U8r5b-fk_XWz1H-udF1f-ywdPkIPYz6J94f32EL3quYx2ooe2-EPkVb64xN0cNyadbfC7bLfvsa-bq-wrhft5fnq7AKH5BUvBjCG_YO6wrCpj7tqcRHnk5qn6OTw869PR2k8QSG1sqCrVGhlckKsCyopqBOO5IYRorWhhSI-xLZcZDzEXmqNCYWhYp4WWlhR5VZ4YdgzNGuCzLYRloZSY43MlFM85IG60sJIUlErmHGeJYhtxFnaSC8Op1zUZf-fmQplxiCREpRQRiUkKB3vWg70GrfgD0BTIxbIsfsLwWTKaDLlbSaToNeg53KYNB1dvNwPQhJCMCET9LZHAEFGAx04C73uuvLLj993AP08noDeR5BvgzisjlMP4Z2AeGuC3J0gg5vbyfI2WOVGKl0Jpa8KLqWKcOfGUm9efjMuw49CV11TtWvAQPdLSKJJgp4Phj1KlgkolnOeIDUx-YnopyvN-VnPTx5K4BDWRYLmo3PcSbk7_0O5L9ADChMqGUkJ30Wz1eW6ehnyxpV51YeIv9awbr8 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbK9gCXivJqoIBBSMAh27XjR3JAqItaFSQWVCjqLfIj2SKlSWh2VfHv8SROIKKCXuMvUTyvjJ2Zzwi9ICKmeZIloXvLJGQ2NyGk5WHEKBOWE8UkNDh_XIijE_bhlJ9uoEXfCwNllX1MbAO1rQzske9Bpi_dE2Tytv4RwqlR8He1P0JD-aMV7JuWYuwG2qTAjDVBm_ODxefjPjY77xbCN9BFkux5fU3rqsymLTm5iEYfqJbHf4jWk7qomqtS0b8rKm-uy1r9vFRF8cfn6vA22vJ5Jt7vDGMbbWTlHbTtPbnBrzzd9Ou7aH5c6XWzwlXdbmvjvKgusSqWbvKrs3Psklq87MAY9hWKDMNmP26y5bnvWyrvoZPDg6_vjkJ_skJoREJXIVdSx4QY61SVUMstiXVEiFKaJpLkLubFfMZcTKZGa7dglFFOE8UNz2LDc66j-2hSOpntICw0pdpoMZNWMpcfqkxxLUhGDY-0zaMARb04U-Npx-H0iyJt_6VJt_zoJJKCElKvhACFw111R7vxH_wcNDVggTS7vVBdLFPvg6nQSueGA4lazKywcW6Y1dywZGZzaXWAnoKe064DdXD9dN8JiXMecRGg5y0CiDNKqMxZqnXTpO8_fbsG6MvxCPTSg_LKicMo3w3h5gSEXCPk7gjp3N-MhnfAKnupNOlvR3F39pZ69fCzYRgeCtV2ZVatAQNVMS65JgF60Bn2INmIwyI6ZgGSI5MfiX48Un4_a3nL3dLYhXseoOngHNdS7sN_z-MRukWhJ2VGQsJ20WR1sc4eu0xxpZ949_8FpT5rNg priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdGkWAvE-NjCxtgEBLwkKp2_JE8ILQhpoE0kAZFe4v8kXSTsqQ0rcb-e3yJExHRib3WP0fpne985_h-h9BrImKaJ1kSurdMQmZzE0JYHkaMMmE5UUxCgfPJV3E8ZV_O-NkG6nq2egHWa1M76Cc1XRTj37-uPziDf990bZCkmzSeV2U2bijGRXQH3XV7VQLNHE5Y_13BWbcQvoDuppmb6F7EIVGI2WCvaij9e8c9mhdVvS4q_fdy5f1VOVfXV6oo_tq5jh6gLR9y4oN2jWyjjax8iLa9Udf4rWeefvcIHZ5WelUvcTVvTrhxXlRXWBWzanGxPL_ELr7FsxaM4YihyDCc--M6m136EqbyMZoeffrx8Tj0TRZCIxK6DLmSOibEWKe1hFpuSawjQpTSNJEkd-4v5hPm3DM1WrvcUUY5TRQ3PIsNz7mOnqBR6cS3i7DQlGqjxURayVyoqDLFtSAZNTzSNo8CFHXiTI1nIIdGGEXafFaTLhNpJZKCPlKvjwCF_ax5y8DxH_whaKrHAn9280O1mKXeHFOhlc4NBz61mFlh49wwq7lhycTm0uoAvQA9p20xau8F0gMnJM55xEWAXjUI4NAo4ZLOTK3qOv387ectQN9PB6A3HpRXThxG-cII95-Am2uA3B8gnScwg-FdWJWdVOoUsmPprE4mbma3UtcPv-yH4aFw8a7MqhVg4IKMi7NJgHbahd1LtjOTAMnBkh-IfjhSXpw3FOYuS3aenwdo3BvHrZT79MaX2EObFCpTJiQkbB-NlotV9szFi0v9vHEBfwB_Dmo0 priority: 102 providerName: Scholars Portal |
| Title | Robust optical flow algorithm for general single cell segmentation |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/35030184 https://www.proquest.com/docview/2619734279 https://www.proquest.com/docview/2620081541 https://pubmed.ncbi.nlm.nih.gov/PMC8759635 https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0261763&type=printable https://doaj.org/article/6babfc5260184d6d8fc4db5c490df7db http://dx.doi.org/10.1371/journal.pone.0261763 |
| UnpaywallVersion | publishedVersion |
| Volume | 17 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: HH5 dateStart: 20060101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20060101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20061001 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Open Access Full Text customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DOA dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCO Food Science Source customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: A8Z dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: ABDBF dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DIK dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: GX1 dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M~E dateStart: 20060101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: RPM dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7X7 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: BENPR dateStart: 20061201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Public Health Database (NC LIVE) customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8C1 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8FG dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1932-6203 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M48 dateStart: 20061201 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELXa3QNcgPLVQFkCQgIO2a4dO06ObdVSkFqqQlF7QJHtJNuKNFk1WVVw4Lczk3gjAkWUA5dotX624rFnPGN7Xgh5QYOQZVEaefCWkceTzHjolns-ZzxIBFVcYoLz3n6we8TfHYvjJfJ5kQtjJQgxYl5WzUk-_iiLdN1Kch35itrT0zH1JV3UGM8ANG4IxkFjGsYh3BmrMQFpmQwDAa76gAyP9g82TtqTZuYFbOLbdLo_tdRbrhpW_852D_DNrnJMf79feWNezNTXS5XnPy1eO7fJ90W32zsrX8bzWo_Nt18YIf-bXO6QW9btdTfaVlbIUlrcJSvWsFTuK8t-_foe2Tws9byq3XLW7LK7WV5euiqflhdn9em5Cz62O23BLm5z5KmLZw9ulU7PbRpVcZ8c7Wx_3Nr17IcePBNErPaEkjqk1CQwcyKWiISG2qdUKc0iSTMwwaGYcFgimNEa4lfpZyxSwog0NCIT2n9ABgV0c5W4gWZMGx1MZCI5uKsqVUIHNGVG-DrJfIf4i_GMjWVBx49x5HFztCchGmolEqPcYis3h3hdrVnLAvIX_CZOlQ6LHN7NHzBwsR2wONBKZ0Ygp1vIkyAJM8MTLQyPJkkmE-2QpzjR4jYhtrNE8QYISQjhi8AhzxsE8ngUeFFoquZVFb99_-kaoA-HPdBLC8pKEIdRNjkD-oTzqodc6yHBGple8SpOzIVUqhgjdAmaLyOouVCVq4ufdcXYKF7-K9Jyjhi8pAO-PnXIw1azOsn6AmP6kDtE9nSuJ_p-SXF22tCoQ6QOq49wyLjTzmsN7qN_rfCY3GSYNDOhHuVrZFBfzNMn4MrWekSW5bGEZ7hF8bnzZkSGm9v7B4ejZnMInns8HFmz9QPPuapg |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOZQLorwaKDQgEHBIu3b8SA4ItUC1Sx9IpUW9BT-SLVKaLM2uqv4pfiMzSTYQUUEvvcZfrGRmPJ6x50HICyojlsVpHMBXxgF3mQ3QLA9Czrh0gmquMMF5b18Oj_inY3G8QH7Oc2EwrHKuE2tF7UqLZ-QbaOkrmEHF7yY_Auwahber8xYajVjspBfn4LJVb0cfgL8vGdv-ePh-GLRdBQIrYzYNhFYmotQ6-MyYOeFoZEJKtTYsVjSD9R6JAQd9xKwx4CypMGOxFlakkRWZMCHMe4Pc5CHoElg_6rhz8EB3SNmm54WKbrTSsD4pi3S9Ln0uw972V3cJ6PaCxUleVpcZun_Hay7Niom-ONd5_sdmuH2H3G6tWH-zEbtlspAWd8lyqycq_3VbzPrNPbJ1UJpZNfXLSX1o7md5ee7rfAyknZ6c-mAy--MG7OOpRZ76eJXgV-n4tM2KKu6To2uh8AOyWADNVogvDWPGGjlQTnGwPnWqhZE0ZVaExmWhR8I5ORPbFjXH3hp5Ut_UKXBuGookyISkZYJHgu6tSVPU4z_4LeRUh8WS3PWD8myctCs8kUabzAos0RZxJ12UWe6MsDweuEw545E15HPS5Ld2iiXZBCIJIUIhPfK8RmBZjgLjfsZ6VlXJ6PPXK4C-HPRAr1pQVgI5rG5zLeCfsNxXD7naQ4Jysb3hFZTKOVWq5PcyhDfnknr58LNuGCfFWL4iLWeIwZgbMN2pRx42gt1RNhTookfcI6on8j3S90eK7yd1VXRwvGEzER5Z7xbHlZj76N__sUaWhod7u8nuaH_nMbnFMPtlQAPKV8ni9GyWPgGbdGqe1orAJ9-uW_P8AoTOol0 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKIgEXRHk1UGhAIOCQ3bUd28kBoZZSdSkU1FK0t-BHskVKk6XZ1ap_jV-HJ_EGIiropdd4YiXfjMcz9jwQeoZ5RLI4jQP7lXEQmkwHYJYHNCQhNwzLUECC88d9vnsUvh-z8Qr6ucyFgbDKpU6sFbUpNZyRD8DSF3YGEQ8yFxbxeXvnzfRHAB2k4KZ12U6jEZG99Gxh3bfq9Wjb8vo5ITvvvrzdDVyHgUDzmMwCJoWKMNbGfnJMDDM4UhRjKRWJBc7s2o_YMLS6iWilrOMkaEZiyTRLI80ypqid9wq6KiiNIZxQjFtnz-oRzl2qHhV44CSjPy2LtF-XQee0sxXWHQPafaE3zcvqPKP379jN6_NiKs8WMs__2Bh3bqGbzqL1NxsRXEUraXEbrTqdUfkvXWHrV3fQ1kGp5tXML6f1Abqf5eXCl_nEQjs7PvGt-exPGmIfTjDy1IdrBb9KJycuQ6q4i44uBeF7qFdYzNaQzxUhSis-FEaE1hKVqWSK45RoRpXJqIfoEs5EuwLn0GcjT-pbO2EdnQaRBJiQOCZ4KGjfmjYFPv5DvwWcammhPHf9oDydJG61J1xJlWkG5dqi0HATZTo0iukwHppMGOWhDeBz0uS6tkom2bQgMcYo4x56WlNAiY4ChH0i51WVjD59vQDR4UGH6IUjykoLh5Yu78L-E5T-6lCudyitotGd4TWQyiUqVfJ7Sdo3l5J6_vCTdhgmhbi-Ii3nQAPxN9aMxx663wh2iyxl4K5HoYdER-Q70HdHiu_HdYV064TbjYV5qN8ujgsx98G__2MDXbM6J_kw2t97iG4QSIQZ4gCH66g3O52nj6x5OlOPaz3go2-XrXh-AUEbpqA |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAXoLwaKBAQEnBIunb8SI5bRFWQKKiwqBxQ5EeyrUiTVZOoggO_HU_ijQgUUQ7covizFY894xnb8wWhJ5jHJE-yJLBfmQTU5DoAtzyIKKHcMCypgATnN_t8b05fH7LDNfR5lQvjJGhjxKKqu5N8eKjKbNtJchv4ivrT0xBHAq9qhEsLCjuCcasxHeMQ7Iw1kIB0Ca1zZl31CVqf77-bfepPmknAyTRy6XR_amm0XHWs_oPtnsCXneeY_n6_8nJbLuXXM1kUPy1eu9fQ91W3-zsrX8K2UaH-9gsj5H-Ty3V01bm9_qxvZQOtZeUNtOEMS-0_c-zXz2-inYNKtXXjV8tul93Pi-rMl8WiOj1ujk5862P7ix7swzZHkflw9uDX2eLEpVGVt9B89-WHF3uB-9FDoHlCmoBJoWKMtbEzJyGGGRyrCGMpFUkEzq0JjtmU2iWCaKVs_CqinCSSaZbFmuVMRbfRpLTd3EQ-V4QorfhUGEGtuyozyRTHGdEsUiaPPBStxjPVjgUdfsZRpN3RnrDRUC-RFOSWOrl5KBhqLXsWkL_gd2CqDFjg8O5e2IFL3YClXEmVawacbjE13MS5pkYxTZOpyYVRHnoIEy3tE2IHS5TOrJAYYxHjHnrcIYDHo4SLQgvZ1nX66u3HC4DeH4xATx0or6w4tHTJGbZPMK9GyK0R0lojPSrehIm5kkqdQoQurOaLxNZcqcr5xY-GYmgULv-VWdUCBi7pWF8fe-hOr1mDZCMGMX1MPSRGOjcS_bikPD7qaNRtpG5XH-ahcNDOCw3u3X-tcA9dIZA0M8UBplto0py22X3ryjbqgTNIPwALS6Rd |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+optical+flow+algorithm+for+general+single+cell+segmentation&rft.jtitle=PloS+one&rft.au=Robitaille%2C+Michael+C&rft.au=Byers%2C+Jeff+M&rft.au=Christodoulides%2C+Joseph+A&rft.au=Raphael%2C+Marc+P&rft.date=2022-01-14&rft.eissn=1932-6203&rft.volume=17&rft.issue=1&rft.spage=e0261763&rft_id=info:doi/10.1371%2Fjournal.pone.0261763&rft_id=info%3Apmid%2F35030184&rft.externalDocID=35030184 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |