Robust optical flow algorithm for general single cell segmentation

Cell segmentation is crucial to the field of cell biology, as the accurate extraction of single-cell morphology, migration, and ultimately behavior from time-lapse live cell imagery are of paramount importance to elucidate and understand basic cellular processes. In an effort to increase available s...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 17; no. 1; p. e0261763
Main Authors Robitaille, Michael C., Byers, Jeff M., Christodoulides, Joseph A., Raphael, Marc P.
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 14.01.2022
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0261763

Cover

More Information
Summary:Cell segmentation is crucial to the field of cell biology, as the accurate extraction of single-cell morphology, migration, and ultimately behavior from time-lapse live cell imagery are of paramount importance to elucidate and understand basic cellular processes. In an effort to increase available segmentation tools that can perform across research groups and platforms, we introduce a novel segmentation approach centered around optical flow and show that it achieves robust segmentation of single cells by validating it on multiple cell types, phenotypes, optical modalities, and in-vitro environments with or without labels. By leveraging cell movement in time-lapse imagery as a means to distinguish cells from their background and augmenting the output with machine vision operations, our algorithm reduces the number of adjustable parameters needed for manual optimization to two. We show that this approach offers the advantage of quicker processing times compared to contemporary machine learning based methods that require manual labeling for training, and in most cases achieves higher quality segmentation as well. This algorithm is packaged within MATLAB, offering an accessible means for general cell segmentation in a time-efficient manner.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0261763