Epitope unmasking in vulvovaginal candidiasis is associated with hyphal growth and neutrophilic infiltration

Vaginal candidiasis is a common disorder in women of childbearing age, caused primarily by the dimorphic fungus Candida albicans. Since C. albicans is a normal commensal of the vaginal mucosa, a long-standing question is how the fungus switches from being a harmless commensal to a virulent pathogen....

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 13; no. 7; p. e0201436
Main Authors Pericolini, Eva, Perito, Stefano, Castagnoli, Anna, Gabrielli, Elena, Mencacci, Antonella, Blasi, Elisabetta, Vecchiarelli, Anna, Wheeler, Robert T.
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 31.07.2018
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0201436

Cover

More Information
Summary:Vaginal candidiasis is a common disorder in women of childbearing age, caused primarily by the dimorphic fungus Candida albicans. Since C. albicans is a normal commensal of the vaginal mucosa, a long-standing question is how the fungus switches from being a harmless commensal to a virulent pathogen. Work with human subjects and in mouse disease models suggests that host inflammatory processes drive the onset of symptomatic infection. Fungal cell wall molecules can induce inflammation through activation of epithelial and immune receptors that trigger pro-inflammatory cytokines and chemokines, but pathogenic fungi can evade recognition by masking these molecules. Knowledge about which cell wall epitopes are available for immune recognition during human infection could implicate specific ligands and receptors in the symptoms of vaginal candidiasis. To address this important gap, we directly probed the surface of fungi present in fresh vaginal samples obtained both from women with symptomatic Candida vaginitis and from women that are colonized but asymptomatic. We find that the pro-inflammatory cell wall polysaccharide β-glucan is largely masked from immune recognition, especially on yeast. It is only exposed on a small percentage of hyphal cells, where it tends to co-localize with enhanced levels of chitin. Enhanced β-glucan availability is only found in symptomatic patients with strong neutrophil infiltration, implicating neutrophils as a possible driver of these cell wall changes. This is especially interesting because neutrophils were recently shown to be necessary and sufficient to provoke enhanced β-glucan exposure in C. albicans, accompanied by elevated immune responses. Taken together, our data suggest that the architecture of C. albicans cell wall can be altered by environmental stress during vaginal candidiasis.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
Current address: Department of Surgical, Medical, Dental and Morphological Sciences with interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0201436