Testing a novel isokinetic dynamometer constructed using a 1080 Quantum

This study sought to assess the reliability and comparability of two custom-built isokinetic dynamometers (Model A and Model B) with the gold-standard (Humac Norm). The two custom-built dynamometers consisted of commercially available leg extension machines attached to a robotically controlled resis...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 13; no. 7; p. e0201179
Main Authors Whinton, Alanna K., Thompson, Kyle M. A., Power, Geoffrey A., Burr, Jamie F.
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 20.07.2018
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0201179

Cover

More Information
Summary:This study sought to assess the reliability and comparability of two custom-built isokinetic dynamometers (Model A and Model B) with the gold-standard (Humac Norm). The two custom-built dynamometers consisted of commercially available leg extension machines attached to a robotically controlled resistance device (1080 Quantum), able to measure power, force and velocity outputs. Twenty subjects (14m/6f, 26±4.8yr, 176±7cm, 74.4±12.4kg) performed concentric leg extensions on the custom-built dynamometers and the Humac Norm. Fifteen maximal leg extensions were performed with each leg at 180° s-1, or the linear equivalent (~0.5m s-1). Peak power (W), mean power (W), and fatigue indexes (%) achieved on all three devices were compared. Both custom-built dynamometers revealed high reliability for peak and mean power on repeated tests (ICC>0.88). Coefficient of variation (CV) and standard error of measurement (SEM) were small when comparing power outputs obtained using Model A and the Humac Norm ([Formula: see text] CV = 9.0%, [Formula: see text] SEM = 49W; peak CV = 8.4%, peak SEM = 49W). Whereas, Model B had greater variance ([Formula: see text] CV = 13.3% [Formula: see text] SEM = 120W; peak CV = 14.7%, peak SEM = 146W). The custom-built dynamometers are capable of highly reliable measures, but absolute power outputs varied depending on the leg extension model. Consistent use of a single model offers reliable results for tracking muscular performance over time or testing an intervention.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0201179