Familial Alzheimer’s disease–associated presenilin-1 alters cerebellar activity and calcium homeostasis

Familial Alzheimer's disease (FAD) is characterized by autosomal dominant heritability and early disease onset. Mutations in the gene encoding presenilin-1 (PS1) are found in approximately 80% of cases of FAD, with some of these patients presenting cerebellar damage with amyloid plaques and ata...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of clinical investigation Vol. 124; no. 4; pp. 1552 - 1567
Main Authors Sepulveda-Falla, Diego, Barrera-Ocampo, Alvaro, Hagel, Christian, Korwitz, Anne, Vinueza-Veloz, Maria Fernanda, Zhou, Kuikui, Schonewille, Martijn, Zhou, Haibo, Velazquez-Perez, Luis, Rodriguez-Labrada, Roberto, Villegas, Andres, Ferrer, Isidro, Lopera, Francisco, Langer, Thomas, De Zeeuw, Chris I., Glatzel, Markus
Format Journal Article
LanguageEnglish
Published United States American Society for Clinical Investigation 01.04.2014
Subjects
Online AccessGet full text
ISSN0021-9738
1558-8238
1558-8238
DOI10.1172/JCI66407

Cover

More Information
Summary:Familial Alzheimer's disease (FAD) is characterized by autosomal dominant heritability and early disease onset. Mutations in the gene encoding presenilin-1 (PS1) are found in approximately 80% of cases of FAD, with some of these patients presenting cerebellar damage with amyloid plaques and ataxia with unclear pathophysiology. A Colombian kindred carrying the PS1-E280A mutation is the largest known cohort of PS1-FAD patients. Here, we investigated PS1-E280A-associated cerebellar dysfunction and found that it occurs early in PS1-E208A carriers, while cerebellar signs are highly prevalent in patients with dementia. Postmortem analysis of cerebella of PS1-E280A carrier revealed greater Purkinje cell (PC) loss and more abnormal mitochondria compared with controls. In PS1-E280A tissue, ER/mitochondria tethering was impaired, Ca2+ channels IP3Rs and CACNA1A were downregulated, and Ca2+-dependent mitochondrial transport proteins MIRO1 and KIF5C were reduced. Accordingly, expression of PS1-E280A in a neuronal cell line altered ER/mitochondria tethering and transport compared with that in cells expressing wild-type PS1. In a murine model of PS1-FAD, animals exhibited mild ataxia and reduced PC simple spike activity prior to cerebellar β-amyloid deposition. Our data suggest that impaired calcium homeostasis and mitochondrial dysfunction in PS1-FAD PCs reduces their activity and contributes to motor coordination deficits prior to Aβ aggregation and dementia. We propose that PS1-E280A affects both Ca2+ homeostasis and Aβ precursor processing, leading to FAD and neurodegeneration.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:0021-9738
1558-8238
1558-8238
DOI:10.1172/JCI66407