Analysis of glyphosate, aminomethylphosphonic acid, and glufosinate from human urine by HRAM LC-MS

Aminomethylphosphonic acid (AMPA) is the main metabolite of glyphosate (GLYP) and phosphonic acids in detergents. GLYP is a synthetic herbicide frequently used worldwide alone or together with its analog glufosinate (GLUF). The general public can be exposed to these potentially harmful chemicals; th...

Full description

Saved in:
Bibliographic Details
Published inAnalytical and bioanalytical chemistry Vol. 412; no. 30; pp. 8313 - 8324
Main Authors Franke, Adrian A., Li, Xingnan, Lai, Jennifer F.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2020
Springer
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1618-2642
1618-2650
1618-2650
DOI10.1007/s00216-020-02966-1

Cover

More Information
Summary:Aminomethylphosphonic acid (AMPA) is the main metabolite of glyphosate (GLYP) and phosphonic acids in detergents. GLYP is a synthetic herbicide frequently used worldwide alone or together with its analog glufosinate (GLUF). The general public can be exposed to these potentially harmful chemicals; thus, sensitive methods to monitor them in humans are urgently required to evaluate health risks. We attempted to simultaneously detect GLYP, AMPA, and GLUF in human urine by high-resolution accurate-mass liquid chromatography mass spectrometry (HRAM LC-MS) before and after derivatization with 9-fluorenylmethoxycarbonyl chloride (Fmoc-Cl) or 1-methylimidazole-sulfonyl chloride (ImS-Cl) with several urine pre-treatment and solid phase extraction (SPE) steps. Fmoc-Cl derivatization achieved the best combination of method sensitivity (limit of detection; LOD) and accuracy for all compounds compared to underivatized urine or ImS-Cl-derivatized urine. Before derivatization, the best steps for GLYP involved 0.4 mM ethylenediaminetetraacetic acid (EDTA) pre-treatment followed by SPE pre-cleanup (LOD 37 pg/mL), for AMPA involved no EDTA pre-treatment and no SPE pre-cleanup (LOD 20 pg/mL) or 0.2–0.4 mM EDTA pre-treatment with no SPE pre-cleanup (LOD 19–21 pg/mL), and for GLUF involved 0.4 mM EDTA pre-treatment and no SPE pre-cleanup (LOD 7 pg/mL). However, for these methods, accuracy was sufficient only for AMPA (101–105%), while being modest for GLYP (61%) and GLUF (63%). Different EDTA and SPE treatments prior to Fmoc-Cl derivatization resulted in high sensitivity for all analytes but satisfactory accuracy only for AMPA. Thus, we conclude that our HRAM LC-MS method is suited for urinary AMPA analysis in cross-sectional studies.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Authors’ contributions The manuscript was written through contributions of all authors and all authors approved the final version.
ISSN:1618-2642
1618-2650
1618-2650
DOI:10.1007/s00216-020-02966-1