Trans-cardiac perfusion of neonatal mice and immunofluorescence of the whole body as a method to study nervous system development

Whole animal perfusion is a well-established method that has been used for the past decades in multiple research fields. Particularly, it has been very important for the study of the brain. The rapid and uniform fixation of tissue is essential for the preservation of its integrity and the study of c...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 17; no. 10; p. e0275780
Main Authors Pérez Arévalo, Andrea, Lutz, Anne-Kathrin, Atanasova, Ekaterina, Boeckers, Tobias M.
Format Journal Article
LanguageEnglish
Published San Francisco Public Library of Science 13.10.2022
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0275780

Cover

More Information
Summary:Whole animal perfusion is a well-established method that has been used for the past decades in multiple research fields. Particularly, it has been very important for the study of the brain. The rapid and uniform fixation of tissue is essential for the preservation of its integrity and the study of complex structures. For small tissue pieces submerging in formaldehyde solution oftentimes is sufficient to get a good fixation, larger tissues or organs with a more complicated structure present a greater difficulty. Here, we report the precise parameters to successfully perform trans-cardiac perfusion of neonatal mouse pups that allows a uniform fixation of the whole body for subsequent structural analysis and immunohistochemistry. In comparison to standard perfusion procedures of adult mice, changes in the pump velocity, the buffer volume and in the needle size lead to high quality fixation of neonatal mice pups. Further, we present a whole-body section staining, which results in a highly specific immunofluorescence signal suited for detailed analysis of multiple tissues or systems at the same time. Thus, our protocol provides a reproducible and reliable method for neonatal perfusion and staining that can rapidly be applied in any laboratory. It allows a high quality analysis of cellular structures and expression profiles at early developmental stages.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0275780