G-computation of average treatment effects on the treated and the untreated

Background Average treatment effects on the treated (ATT) and the untreated (ATU) are useful when there is interest in: the evaluation of the effects of treatments or interventions on those who received them, the presence of treatment heterogeneity, or the projection of potential outcomes in a targe...

Full description

Saved in:
Bibliographic Details
Published inBMC medical research methodology Vol. 17; no. 1; pp. 3 - 5
Main Authors Wang, Aolin, Nianogo, Roch A., Arah, Onyebuchi A.
Format Journal Article
LanguageEnglish
Published London BioMed Central 09.01.2017
BioMed Central Ltd
Springer Nature B.V
BMC
Subjects
Online AccessGet full text
ISSN1471-2288
1471-2288
DOI10.1186/s12874-016-0282-4

Cover

More Information
Summary:Background Average treatment effects on the treated (ATT) and the untreated (ATU) are useful when there is interest in: the evaluation of the effects of treatments or interventions on those who received them, the presence of treatment heterogeneity, or the projection of potential outcomes in a target (sub-) population. In this paper we illustrate the steps for estimating ATT and ATU using g-computation implemented via Monte Carlo simulation. Methods To obtain marginal effect estimates for ATT and ATU we used a three-step approach: fitting a model for the outcome, generating potential outcome variables for ATT and ATU separately, and regressing each potential outcome variable on treatment intervention. Results The estimates for ATT, ATU and average treatment effect (ATE) were of similar magnitude, with ATE being in between ATT and ATU as expected. In our illustrative example, the effect (risk difference [RD]) of a higher education on angina among the participants who indeed have at least a high school education (ATT) was −0.019 (95% CI: −0.040, −0.007) and that among those who have less than a high school education in India (ATU) was −0.012 (95% CI: −0.036, 0.010). Conclusions The g-computation algorithm is a powerful way of estimating standardized estimates like the ATT and ATU. Its use should be encouraged in modern epidemiologic teaching and practice.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1471-2288
1471-2288
DOI:10.1186/s12874-016-0282-4