Ultra-short term HRV features as surrogates of short term HRV: a case study on mental stress detection in real life
Background This paper suggests a method to assess the extent to which ultra-short Heart Rate Variability (HRV) features (less than 5 min) can be considered as valid surrogates of short HRV features (nominally 5 min). Short term HRV analysis has been widely investigated for mental stress assessment,...
Saved in:
| Published in | BMC medical informatics and decision making Vol. 19; no. 1; pp. 12 - 13 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
BioMed Central
17.01.2019
BioMed Central Ltd Springer Nature B.V BMC |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1472-6947 1472-6947 |
| DOI | 10.1186/s12911-019-0742-y |
Cover
| Summary: | Background
This paper suggests a method to assess the extent to which ultra-short Heart Rate Variability (HRV) features (less than 5 min) can be considered as valid surrogates of short HRV features (nominally 5 min). Short term HRV analysis has been widely investigated for mental stress assessment, whereas the validity of ultra-short HRV features remains unclear. Therefore, this study proposes a method to explore the extent to which HRV excerpts can be shortened without losing their ability to automatically detect mental stress.
Methods
ECGs were acquired from 42 healthy subjects during a university examination and resting condition. 23 features were extracted from HRV excerpts of different lengths (i.e., 30 s, 1 min, 2 min, 3 min, and 5 min). Significant differences between rest and stress phases were investigated using non-parametric statistical tests at different time-scales. Features extracted from each ultra-short length were compared with the standard short HRV features, assumed as the benchmark, via Spearman’s rank correlation analysis and Bland-Altman plots during rest and stress phases. Using data-driven machine learning approaches, a model aiming to detect mental stress was trained, validated and tested using short HRV features, and assessed on the ultra-short HRV features.
Results
Six out of 23 ultra-short HRV features (MeanNN, StdNN, MeanHR, StdHR, HF, and SD2) displayed consistency across all of the excerpt lengths (i.e., from 5 to 1 min) and 3 out of those 6 ultra-short HRV features (MeanNN, StdHR, and HF) achieved good performance (accuracy above 88%) when employed in a well-dimensioned automatic classifier.
Conclusion
This study concluded that 6 ultra-short HRV features are valid surrogates of short HRV features for mental stress investigation. |
|---|---|
| Bibliography: | ObjectType-Case Study-2 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-4 ObjectType-Report-1 ObjectType-Article-3 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 1472-6947 1472-6947 |
| DOI: | 10.1186/s12911-019-0742-y |