PyMix - The Python mixture package - a tool for clustering of heterogeneous biological data

Background Cluster analysis is an important technique for the exploratory analysis of biological data. Such data is often high-dimensional, inherently noisy and contains outliers. This makes clustering challenging. Mixtures are versatile and powerful statistical models which perform robustly for clu...

Full description

Saved in:
Bibliographic Details
Published inBMC bioinformatics Vol. 11; no. 1; p. 9
Main Authors Georgi, Benjamin, Costa, Ivan Gesteira, Schliep, Alexander
Format Journal Article
LanguageEnglish
Published London BioMed Central 06.01.2010
BioMed Central Ltd
Springer Nature B.V
BMC
Subjects
Online AccessGet full text
ISSN1471-2105
1471-2105
DOI10.1186/1471-2105-11-9

Cover

More Information
Summary:Background Cluster analysis is an important technique for the exploratory analysis of biological data. Such data is often high-dimensional, inherently noisy and contains outliers. This makes clustering challenging. Mixtures are versatile and powerful statistical models which perform robustly for clustering in the presence of noise and have been successfully applied in a wide range of applications. Results PyMix - the Python mixture package implements algorithms and data structures for clustering with basic and advanced mixture models. The advanced models include context-specific independence mixtures, mixtures of dependence trees and semi-supervised learning. PyMix is licenced under the GNU General Public licence (GPL). PyMix has been successfully used for the analysis of biological sequence, complex disease and gene expression data. Conclusions PyMix is a useful tool for cluster analysis of biological data. Due to the general nature of the framework, PyMix can be applied to a wide range of applications and data sets.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1471-2105
1471-2105
DOI:10.1186/1471-2105-11-9