Fast online deconvolution of calcium imaging data
Fluorescent calcium indicators are a popular means for observing the spiking activity of large neuronal populations, but extracting the activity of each neuron from raw fluorescence calcium imaging data is a nontrivial problem. We present a fast online active set method to solve this sparse non-nega...
Saved in:
| Published in | PLoS computational biology Vol. 13; no. 3; p. e1005423 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Public Library of Science
01.03.2017
Public Library of Science (PLoS) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1553-7358 1553-734X 1553-7358 |
| DOI | 10.1371/journal.pcbi.1005423 |
Cover
| Summary: | Fluorescent calcium indicators are a popular means for observing the spiking activity of large neuronal populations, but extracting the activity of each neuron from raw fluorescence calcium imaging data is a nontrivial problem. We present a fast online active set method to solve this sparse non-negative deconvolution problem. Importantly, the algorithm 3progresses through each time series sequentially from beginning to end, thus enabling real-time online estimation of neural activity during the imaging session. Our algorithm is a generalization of the pool adjacent violators algorithm (PAVA) for isotonic regression and inherits its linear-time computational complexity. We gain remarkable increases in processing speed: more than one order of magnitude compared to currently employed state of the art convex solvers relying on interior point methods. Unlike these approaches, our method can exploit warm starts; therefore optimizing model hyperparameters only requires a handful of passes through the data. A minor modification can further improve the quality of activity inference by imposing a constraint on the minimum spike size. The algorithm enables real-time simultaneous deconvolution of O(105) traces of whole-brain larval zebrafish imaging data on a laptop. |
|---|---|
| Bibliography: | new_version ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Conceptualization: JF LP.Formal analysis: JF LP PZ.Funding acquisition: JF LP.Investigation: JF PZ.Methodology: JF LP PZ.Software: JF PZ.Supervision: LP.Writing – original draft: JF LP PZ.Writing – review & editing: JF LP PZ. The authors have declared that no competing interests exist. |
| ISSN: | 1553-7358 1553-734X 1553-7358 |
| DOI: | 10.1371/journal.pcbi.1005423 |