Parkinson’s disease-associated ATP13A2/PARK9 functions as a lysosomal H+,K+-ATPase

Mutations in the human ATP13A2 (PARK9), a lysosomal ATPase, cause Kufor-Rakeb Syndrome, an early-onset form of Parkinson’s disease (PD). Here, we demonstrate that ATP13A2 functions as a lysosomal H + ,K + -ATPase. The K + -dependent ATPase activity and the lysosomal K + -transport activity of ATP13A...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 14; no. 1; pp. 2174 - 11
Main Authors Fujii, Takuto, Nagamori, Shushi, Wiriyasermkul, Pattama, Zheng, Shizhou, Yago, Asaka, Shimizu, Takahiro, Tabuchi, Yoshiaki, Okumura, Tomoyuki, Fujii, Tsutomu, Takeshima, Hiroshi, Sakai, Hideki
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 20.04.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2041-1723
2041-1723
DOI10.1038/s41467-023-37815-z

Cover

More Information
Summary:Mutations in the human ATP13A2 (PARK9), a lysosomal ATPase, cause Kufor-Rakeb Syndrome, an early-onset form of Parkinson’s disease (PD). Here, we demonstrate that ATP13A2 functions as a lysosomal H + ,K + -ATPase. The K + -dependent ATPase activity and the lysosomal K + -transport activity of ATP13A2 are inhibited by an inhibitor of sarco/endoplasmic reticulum Ca 2+ -ATPase, thapsigargin, and K + -competitive inhibitors of gastric H + ,K + -ATPase, such as vonoprazan and SCH28080. Interestingly, these H + ,K + -ATPase inhibitors cause lysosomal alkalinization and α-synuclein accumulation, which are pathological hallmarks of PD. Furthermore, PD-associated mutants of ATP13A2 show abnormal expression and function. Our results suggest that the H + /K + -transporting function of ATP13A2 contributes to acidification and α-synuclein degradation in lysosomes. Mutations in the human ATP13A2, a lysosomal ATPase, is associated with pathogenesis of Parkinson’s disease. Here, the authors show that ATP13A2 functions as H + /K + transporting protein, preventing lysosomal alkalinization and α-synuclein accumulation.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-023-37815-z