1883-P: Metformin Increases Protein Phosphatase 2A Activity in Primary Skeletal Muscle Cells Derived from Lean Healthy Insulin-Sensitive Human Participants

Skeletal muscle insulin resistance is one of the primary contributors of type 2 diabetes (T2D). Metformin is the first-line drug for the treatment of T2D. Main known effects of metformin include inhibition of glucose production in liver and attenuation of insulin resistance in skeletal muscle. Howev...

Full description

Saved in:
Bibliographic Details
Published inDiabetes (New York, N.Y.) Vol. 69; no. Supplement_1
Main Authors MESTAREEHI, AKTHAM H., SEYOUM, BERHANE, MSALLATY, ZAHER, MALLISHO, ABDULLAH P., ZHANG, XIANGMIN, KOWLURU, ANJAN, YI, ZHENGPING
Format Journal Article
LanguageEnglish
Published New York American Diabetes Association 01.06.2020
Subjects
Online AccessGet full text
ISSN0012-1797
1939-327X
DOI10.2337/db20-1883-P

Cover

More Information
Summary:Skeletal muscle insulin resistance is one of the primary contributors of type 2 diabetes (T2D). Metformin is the first-line drug for the treatment of T2D. Main known effects of metformin include inhibition of glucose production in liver and attenuation of insulin resistance in skeletal muscle. However, molecular mechanism of metformin’s action in skeletal muscle is not well understood. Protein phosphatase 2A (PP2A), a major serine/threonine phosphatase, plays a pivotal role in cellular processes (e.g., signal transduction, apoptosis), and acts through dephosphorylating key signaling molecules such as AKT, AMPK, etc. However, whether or not PP2A plays a role in metformin-induced insulin sensitivity improvement in human skeletal muscle cells remains to be elucidated. In the present study, hyperinsulinemic-euglycemic clamp was performed to assess insulin sensitivity in human subjects and skeletal muscle biopsy samples were obtained. Primary human skeletal muscle cells (shown to retain metabolic characteristics of donors) were cultured from these muscle biopsies from 8 lean insulin sensitive participants (4 Female and 4 male; age: 21.4±0.8 yrs; BMI: 22.1±0.7 kg/m2; 2-hour OGTT: 96.5± 6.3 mg/dl; HbA1c: 5.3±0.1 %; fasting plasma glucose: 87.5±1.4 mg/dl; M-value; 10.9±0.8 mg/kgBW/min). The cells were expanded, differentiated into myotubes, and treated with 50µM metformin (the physiologic concentration) for 24 hours before harvesting. PP2A activity was measured by a phosphatase activity assay (Millipore). The results indicated that metformin increased the activity of PP2A in the myotubes derived from all 8 participants, and the average fold increase is 1.59±0.13 (p<0.05). These results provided the first evidence to suggest that metformin promotes activation of PP2A in human skeletal muscle cells derived from lean insulin sensitive participants, and may help to understand metformin’s action in skeletal muscle in humans.
Bibliography:ObjectType-Conference Proceeding-1
SourceType-Scholarly Journals-1
content type line 14
ISSN:0012-1797
1939-327X
DOI:10.2337/db20-1883-P