Optimization design of internal space layout of three-bedroom residential apartment based on IGA and DE algorithm

To solve the problems of insufficient global optimization ability and easy loss of population diversity in building interior layout design, this study proposes a novel layout optimization model integrating interactive genetic algorithm and improved differential evolutionary algorithm to improve the...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 20; no. 7; p. e0326153
Main Authors Zhao, Ling, Li, Baijun
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 07.07.2025
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0326153

Cover

More Information
Summary:To solve the problems of insufficient global optimization ability and easy loss of population diversity in building interior layout design, this study proposes a novel layout optimization model integrating interactive genetic algorithm and improved differential evolutionary algorithm to improve the global optimization ability and maintain population diversity in building layout design. The model characterizes room functions and spatial locations through binary coding, and uses dynamic fitness function and backtracking strategy to improve space utilization and functional fitness. In the experiments, optimization metrics such as kinematic optimization rate (calculated based on the shortest path and connectivity between functional areas), space utilization rate (calculated by the ratio of room area to total usable space), and functional fitness (based on the weighted sum of users’ subjective evaluations and functional matches) all perform well. Quantitatively, it is found that the model achieves 94.76% in terms of motion optimization rate, the highest space utilization rate is 96.6%, functional fitness is 9.4, and user satisfaction is close to 94.21%. The optimization results show that the proposed method has significant advantages in improving space utilization and meeting personalized design needs. However, despite the good optimization results, the method still faces the problem of improving the optimization ability under high-dimensional space and complex constraints. This study provides an efficient solution for intelligent building layout design and has certain practical value.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0326153