Recognition of flight cadets brain functional magnetic resonance imaging data based on machine learning analysis

The rapid advancement of the civil aviation industry has attracted significant attention to research on pilots. However, the brain changes experienced by flight cadets following their training remain, to some extent, an unexplored territory compared to those of the general population. The aim of thi...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 20; no. 6; p. e0324081
Main Authors Ye, Lu, Weng, Shuhao, Yan, Dongfeng, Ma, Shan, Chen, Xi
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 05.06.2025
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0324081

Cover

More Information
Summary:The rapid advancement of the civil aviation industry has attracted significant attention to research on pilots. However, the brain changes experienced by flight cadets following their training remain, to some extent, an unexplored territory compared to those of the general population. The aim of this study was to examine the impact of flight training on brain function by employing machine learning(ML) techniques. We collected resting-state functional magnetic resonance imaging (resting-state fMRI) data from 79 flight cadets and ground program cadets, extracting blood oxygenation level-dependent (BOLD) signal, amplitude of low frequency fluctuation (ALFF), regional homogeneity (ReHo), and functional connectivity (FC) metrics as feature inputs for ML models. After conducting feature selection using a two-sample t-test, we established various ML classification models, including Extreme Gradient Boosting (XGBoost), Logistic Regression (LR), Random Forest (RF), Support Vector Machine (SVM), and Gaussian Naive Bayes (GNB). Comparative analysis of the model results revealed that the LR classifier based on BOLD signals could accurately distinguish flight cadets from the general population, achieving an AUC of 83.75% and an accuracy of 0.93. Furthermore, an analysis of the features contributing significantly to the ML classification models indicated that these features were predominantly located in brain regions associated with auditory-visual processing, motor function, emotional regulation, and cognition, primarily within the Default Mode Network (DMN), Visual Network (VN), and SomatoMotor Network (SMN). These findings suggest that flight-trained cadets may exhibit enhanced functional dynamics and cognitive flexibility.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0324081