Research on memory failure prediction based on ensemble learning
Timely prediction of memory failures is crucial for the stable operation of data centers. However, existing methods often rely on a single classifier, which can lead to inaccurate or unstable predictions. To address this, we propose a new ensemble model for predicting CE-driven memory failures, wher...
Saved in:
| Published in | PloS one Vol. 20; no. 4; p. e0321954 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Public Library of Science
23.04.2025
Public Library of Science (PLoS) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1932-6203 1932-6203 |
| DOI | 10.1371/journal.pone.0321954 |
Cover
| Summary: | Timely prediction of memory failures is crucial for the stable operation of data centers. However, existing methods often rely on a single classifier, which can lead to inaccurate or unstable predictions. To address this, we propose a new ensemble model for predicting CE-driven memory failures, where failures occur due to a surge of correctable errors (CEs) in memory, causing server downtime. Our model combines several strong-performing classifiers, such as Random Forest, LightGBM, and XGBoost, and assigns different weights to each based on its performance. By optimizing the decision-making process, the model improves prediction accuracy. We validate the model using in-memory data from Alibaba’s data center, and the results show an accuracy of over 84%, outperforming existing single and dual-classifier models, further confirming its excellent predictive performance. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: The authors have declared that no competing interests exist. |
| ISSN: | 1932-6203 1932-6203 |
| DOI: | 10.1371/journal.pone.0321954 |