Research on memory failure prediction based on ensemble learning

Timely prediction of memory failures is crucial for the stable operation of data centers. However, existing methods often rely on a single classifier, which can lead to inaccurate or unstable predictions. To address this, we propose a new ensemble model for predicting CE-driven memory failures, wher...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 20; no. 4; p. e0321954
Main Authors Zhang, Peng, Zhang, Jialiang, Li, Yi
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 23.04.2025
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0321954

Cover

More Information
Summary:Timely prediction of memory failures is crucial for the stable operation of data centers. However, existing methods often rely on a single classifier, which can lead to inaccurate or unstable predictions. To address this, we propose a new ensemble model for predicting CE-driven memory failures, where failures occur due to a surge of correctable errors (CEs) in memory, causing server downtime. Our model combines several strong-performing classifiers, such as Random Forest, LightGBM, and XGBoost, and assigns different weights to each based on its performance. By optimizing the decision-making process, the model improves prediction accuracy. We validate the model using in-memory data from Alibaba’s data center, and the results show an accuracy of over 84%, outperforming existing single and dual-classifier models, further confirming its excellent predictive performance.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0321954