Application of PSO-integrated K-means algorithm in resident digital portrait classification
As digital governance progresses rapidly, constructing digital portraits of residents has become instrumental in enhancing local-level administrative capabilities. Nonetheless, traditional K-means clustering algorithms struggle with the classification of high-dimensional and complex data, thereby li...
Saved in:
| Published in | PloS one Vol. 20; no. 8; p. e0329123 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Public Library of Science
14.08.2025
Public Library of Science (PLoS) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1932-6203 1932-6203 |
| DOI | 10.1371/journal.pone.0329123 |
Cover
| Summary: | As digital governance progresses rapidly, constructing digital portraits of residents has become instrumental in enhancing local-level administrative capabilities. Nonetheless, traditional K-means clustering algorithms struggle with the classification of high-dimensional and complex data, thereby limiting their effectiveness. To address this issue, this paper proposes a novel hybrid algorithm—PSO-KM—that integrates Particle Swarm Optimization with K-means to improve both accuracy and computational efficiency in clustering resident profile data. Drawing on comprehensive resident information collected in 2023 from a community management system, the method leverages PSO’s global optimization abilities alongside K-means’ iterative refinement to dynamically update cluster centroids. Performance evaluation shows a significant uplift in clustering metrics, with a silhouette score of 0.752 ± 0.021 and inter-cluster distance of 1.493 ± 0.036. Comparative analysis against conventional and advanced methods (e.g., GA-K-means, DBSCAN) reveals that PSO-KM delivers superior outcomes. Among different feature categories, behavioral data yield the best classification performance, with a silhouette value of 0.184, highlighting the discriminatory power of dynamic behavioral traits. Furthermore, segmentation results disclose varying dominant features across income brackets: demographic factors are primary for low-income groups, behavioral metrics dominate middle-income segments, while social network indicators are key for high-income populations. These insights confirm PSO-KM’s potential in refining digital profiling processes and fostering the advancement of grassroots digital governance practices. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: The authors have declared that no competing interests exist. |
| ISSN: | 1932-6203 1932-6203 |
| DOI: | 10.1371/journal.pone.0329123 |