Classification of CT scan and X-ray dataset based on deep learning and particle swarm optimization

In 2019, the novel coronavirus swept the world, exposing the monitoring and early warning problems of the medical system. Computer-aided diagnosis models based on deep learning have good universality and can well alleviate these problems. However, traditional image processing methods may lead to hig...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 20; no. 1; p. e0317450
Main Authors Liu, Honghua, Zhao, Mingwei, She, Chang, Peng, Han, Liu, Mailan, Li, Bo
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 27.01.2025
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0317450

Cover

More Information
Summary:In 2019, the novel coronavirus swept the world, exposing the monitoring and early warning problems of the medical system. Computer-aided diagnosis models based on deep learning have good universality and can well alleviate these problems. However, traditional image processing methods may lead to high false positive rates, which is unacceptable in disease monitoring and early warning. This paper proposes a low false positive rate disease detection method based on COVID-19 lung images and establishes a two-stage optimization model. In the first stage, the model is trained using classical gradient descent, and relevant features are extracted; in the second stage, an objective function that minimizes the false positive rate is constructed to obtain a network model with high accuracy and low false positive rate. Therefore, the proposed method has the potential to effectively classify medical images. The proposed model was verified using a public COVID-19 radiology dataset and a public COVID-19 lung CT scan dataset. The results show that the model has made significant progress, with the false positive rate reduced to 11.3% and 7.5%, and the area under the ROC curve increased to 92.8% and 97.01%.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0317450