Based on PCA and SSA-LightGBM oil-immersed transformer fault diagnosis method

A fault diagnosis method for oil immersed transformers based on principal component analysis and SSA LightGBM is proposed to address the problem of low diagnostic accuracy caused by the complexity of current oil immersed transformer faults. Firstly, data on dissolved gases in oil is collected, and a...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 20; no. 2; p. e0314481
Main Authors Wang, Jizhong, Chi, Jianfei, Ding, Yeqiang, Yao, Haiyan, Guo, Qiang
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 19.02.2025
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0314481

Cover

More Information
Summary:A fault diagnosis method for oil immersed transformers based on principal component analysis and SSA LightGBM is proposed to address the problem of low diagnostic accuracy caused by the complexity of current oil immersed transformer faults. Firstly, data on dissolved gases in oil is collected, and a 17 dimensional fault feature matrix is constructed using the uncoded ratio method. The feature matrix is then standardized to obtain joint features. Secondly, principal component analysis is used for feature fusion to eliminate information redundancy between variables and construct fused features. Finally, a transformer diagnostic model based on SSA-LightGBM was constructed, and the ten fold cross validation method was used to verify the classification ability of the model. The experimental results show that the SSA-LightGBM model proposed in this paper has an average fault diagnosis accuracy of 93.6% after SSA algorithm optimization, which is 3.6% higher than before optimization. At the same time, compared with the GA-LightGBM and GWO-LightGBM fault diagnosis models, SSA-LightGBM has improved the diagnostic accuracy by 8.1% and 5.7% respectively, verifying that this method can effectively improve the fault diagnosis performance of oil immersed transformers and is superior to other similar methods.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0314481