Fault diagnosis of nonlinear analog circuits using generalized frequency response function and LSSVM

A fault diagnosis method of nonlinear analog circuits is proposed that combines the generalized frequency response function (GFRF) and the simplified least squares support vector machine (LSSVM). In this study, the harmonic signal is used as an input to estimate the GFRFs. To improve the estimation...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 19; no. 12; p. e0316151
Main Authors Zhang, Jialiang, Yang, Yaowang
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 30.12.2024
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0316151

Cover

More Information
Summary:A fault diagnosis method of nonlinear analog circuits is proposed that combines the generalized frequency response function (GFRF) and the simplified least squares support vector machine (LSSVM). In this study, the harmonic signal is used as an input to estimate the GFRFs. To improve the estimation accuracy, the GFRFs of an analog circuit are solved directly using time-domain data. The Fourier transform of the time-domain data is avoided. After obtaining the fault features, a multi-fault classifier is designed based on the LSSVM. In order to improve the training speed and reduces storage, a simplified LSSVM model is used to construct the classifier, and the conjugate gradient algorithm is used for training. The fault diagnosis simulation experiment is conducted on a biquad filter circuit to verify the proposed method. The experimental results show that the proposed method has high diagnostic accuracy and short training time.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0316151