Fault diagnosis of nonlinear analog circuits using generalized frequency response function and LSSVM
A fault diagnosis method of nonlinear analog circuits is proposed that combines the generalized frequency response function (GFRF) and the simplified least squares support vector machine (LSSVM). In this study, the harmonic signal is used as an input to estimate the GFRFs. To improve the estimation...
Saved in:
| Published in | PloS one Vol. 19; no. 12; p. e0316151 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Public Library of Science
30.12.2024
Public Library of Science (PLoS) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1932-6203 1932-6203 |
| DOI | 10.1371/journal.pone.0316151 |
Cover
| Summary: | A fault diagnosis method of nonlinear analog circuits is proposed that combines the generalized frequency response function (GFRF) and the simplified least squares support vector machine (LSSVM). In this study, the harmonic signal is used as an input to estimate the GFRFs. To improve the estimation accuracy, the GFRFs of an analog circuit are solved directly using time-domain data. The Fourier transform of the time-domain data is avoided. After obtaining the fault features, a multi-fault classifier is designed based on the LSSVM. In order to improve the training speed and reduces storage, a simplified LSSVM model is used to construct the classifier, and the conjugate gradient algorithm is used for training. The fault diagnosis simulation experiment is conducted on a biquad filter circuit to verify the proposed method. The experimental results show that the proposed method has high diagnostic accuracy and short training time. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: The authors have declared that no competing interests exist. |
| ISSN: | 1932-6203 1932-6203 |
| DOI: | 10.1371/journal.pone.0316151 |