Nested Stochastic Block Models applied to the analysis of single cell data
Single cell profiling has been proven to be a powerful tool in molecular biology to understand the complex behaviours of heterogeneous system. The definition of the properties of single cells is the primary endpoint of such analysis, cells are typically clustered to underpin the common determinants...
Saved in:
Published in | BMC bioinformatics Vol. 22; no. 1; pp. 576 - 19 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
BioMed Central
30.11.2021
BioMed Central Ltd BMC |
Subjects | |
Online Access | Get full text |
ISSN | 1471-2105 1471-2105 |
DOI | 10.1186/s12859-021-04489-7 |
Cover
Summary: | Single cell profiling has been proven to be a powerful tool in molecular biology to understand the complex behaviours of heterogeneous system. The definition of the properties of single cells is the primary endpoint of such analysis, cells are typically clustered to underpin the common determinants that can be used to describe functional properties of the cell mixture under investigation. Several approaches have been proposed to identify cell clusters; while this is matter of active research, one popular approach is based on community detection in neighbourhood graphs by optimisation of modularity. In this paper we propose an alternative and principled solution to this problem, based on Stochastic Block Models. We show that such approach not only is suitable for identification of cell groups, it also provides a solid framework to perform other relevant tasks in single cell analysis, such as label transfer. To encourage the use of Stochastic Block Models, we developed a python library,
schist
, that is compatible with the popular
scanpy
framework. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 1471-2105 1471-2105 |
DOI: | 10.1186/s12859-021-04489-7 |