Enhancing the performance of the vehicle active suspension system by an Optimal Sliding Mode Control algorithm

The suspension system determines riding comfort. This item utilizes an active suspension system to absorb vehicle vibration. A quarter-dynamics model with five state variables simulates the oscillations of a vehicle. This model incorporates the hydraulic actuator effect into linear differential equa...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 17; no. 12; p. e0278387
Main Authors Nguyen, Duc Ngoc, Nguyen, Tuan Anh
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.12.2022
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0278387

Cover

More Information
Summary:The suspension system determines riding comfort. This item utilizes an active suspension system to absorb vehicle vibration. A quarter-dynamics model with five state variables simulates the oscillations of a vehicle. This model incorporates the hydraulic actuator effect into linear differential equations. This is an entirely original design. In addition, the OSMC (Optimal Sliding Mode Control) algorithm is proposed for active suspension system operation control. The in-loop algorithm optimizes the controller’s parameters. According to the findings of the study, when the OSMC algorithm was implemented, the maximum and average displacement values of the sprung mass were dramatically lowered under normal oscillation conditions. If a vehicle employs only a passive suspension system or an active suspension system with a standard linear control algorithm, the wheel is fully detached from the road surface in hazardous conditions. When the OSMC algorithm is utilized to control the operation of the active suspension system, the wheel-to-road interaction is always maintained. This algorithm provides a great degree of efficiency.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0278387