FeatureSelect: a software for feature selection based on machine learning approaches

Background Feature selection, as a preprocessing stage, is a challenging problem in various sciences such as biology, engineering, computer science, and other fields. For this purpose, some studies have introduced tools and softwares such as WEKA. Meanwhile, these tools or softwares are based on fil...

Full description

Saved in:
Bibliographic Details
Published inBMC bioinformatics Vol. 20; no. 1; pp. 170 - 17
Main Authors Masoudi-Sobhanzadeh, Yosef, Motieghader, Habib, Masoudi-Nejad, Ali
Format Journal Article
LanguageEnglish
Published London BioMed Central 03.04.2019
BioMed Central Ltd
Springer Nature B.V
BMC
Subjects
Online AccessGet full text
ISSN1471-2105
1471-2105
DOI10.1186/s12859-019-2754-0

Cover

More Information
Summary:Background Feature selection, as a preprocessing stage, is a challenging problem in various sciences such as biology, engineering, computer science, and other fields. For this purpose, some studies have introduced tools and softwares such as WEKA. Meanwhile, these tools or softwares are based on filter methods which have lower performance relative to wrapper methods. In this paper, we address this limitation and introduce a software application called FeatureSelect. In addition to filter methods, FeatureSelect consists of optimisation algorithms and three types of learners. It provides a user-friendly and straightforward method of feature selection for use in any kind of research, and can easily be applied to any type of balanced and unbalanced data based on several score functions like accuracy, sensitivity, specificity, etc. Results In addition to our previously introduced optimisation algorithm (WCC), a total of 10 efficient, well-known and recently developed algorithms have been implemented in FeatureSelect. We applied our software to a range of different datasets and evaluated the performance of its algorithms. Acquired results show that the performances of algorithms are varying on different datasets, but WCC, LCA, FOA, and LA are suitable than others in the overall state. The results also show that wrapper methods are better than filter methods. Conclusions FeatureSelect is a feature or gene selection software application which is based on wrapper methods. Furthermore, it includes some popular filter methods and generates various comparison diagrams and statistical measurements. It is available from GitHub ( https://github.com/LBBSoft/FeatureSelect ) and is free open source software under an MIT license.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
ISSN:1471-2105
1471-2105
DOI:10.1186/s12859-019-2754-0