SpliceV: analysis and publication quality printing of linear and circular RNA splicing, expression and regulation

Background In eukaryotes, most genes code for multiple transcript isoforms that are generated through the complex and tightly regulated process of RNA splicing. Despite arising from identical precursor transcripts, alternatively spliced RNAs can have dramatically different functions. Transcriptome c...

Full description

Saved in:
Bibliographic Details
Published inBMC bioinformatics Vol. 20; no. 1; pp. 231 - 7
Main Authors Ungerleider, Nathan, Flemington, Erik
Format Journal Article
LanguageEnglish
Published London BioMed Central 08.05.2019
BioMed Central Ltd
Springer Nature B.V
BMC
Subjects
Online AccessGet full text
ISSN1471-2105
1471-2105
DOI10.1186/s12859-019-2865-7

Cover

More Information
Summary:Background In eukaryotes, most genes code for multiple transcript isoforms that are generated through the complex and tightly regulated process of RNA splicing. Despite arising from identical precursor transcripts, alternatively spliced RNAs can have dramatically different functions. Transcriptome complexity is elevated further by the production of circular RNAs (circRNAs), another class of mature RNA that results from the splicing of a downstream splice donor to an upstream splice acceptor. While there has been a rapid expansion of circRNA catalogs in the last few years through the utilization of next generation sequencing approaches, our understanding of the mechanisms and regulation of circular RNA biogenesis, the impact that circRNA generation has on parental transcript processing, and the functions carried out by circular RNAs remains limited. Results Here, we present a visualization and analysis tool, SpliceV, that rapidly plots all relevant forward- and back-splice data, with exon and single nucleotide level coverage information from RNA-seq experiments in a publication quality format. SpliceV also integrates analysis features that assist investigations into splicing regulation and transcript functions through the display of predicted RNA binding protein sites and the configuration of repetitive elements along the primary transcript. Conclusions SpliceV is an easy-to-use splicing visualization tool, compatible with both Python 2.7 and 3+, and distributed under the GNU Public License. The source code is freely available for download at https://github.com/flemingtonlab/SpliceV and can be installed from PyPI using pip.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1471-2105
1471-2105
DOI:10.1186/s12859-019-2865-7