Time-lagged Ordered Lasso for network inference
Background Accurate gene regulatory networks can be used to explain the emergence of different phenotypes, disease mechanisms, and other biological functions. Many methods have been proposed to infer networks from gene expression data but have been hampered by problems such as low sample size, inacc...
        Saved in:
      
    
          | Published in | BMC bioinformatics Vol. 19; no. 1; pp. 545 - 15 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        London
          BioMed Central
    
        29.12.2018
     BioMed Central Ltd Springer Nature B.V BMC  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1471-2105 1471-2105  | 
| DOI | 10.1186/s12859-018-2558-7 | 
Cover
| Summary: | Background
Accurate gene regulatory networks can be used to explain the emergence of different phenotypes, disease mechanisms, and other biological functions. Many methods have been proposed to infer networks from gene expression data but have been hampered by problems such as low sample size, inaccurate constraints, and incomplete characterizations of regulatory dynamics. Since expression regulation is dynamic, time-course data can be used to infer causality, but these datasets tend to be short or sparsely sampled. In addition, temporal methods typically assume that the expression of a gene at a time point depends on the expression of other genes at only the immediately preceding time point, while other methods include additional time points without any constraints to account for their temporal distance. These limitations can contribute to inaccurate networks with many missing and anomalous links.
Results
We adapted the time-lagged Ordered Lasso, a regularized regression method with temporal monotonicity constraints, for de novo reconstruction. We also developed a semi-supervised method that embeds prior network information into the Ordered Lasso to discover novel regulatory dependencies in existing pathways. R code is available at
https://github.com/pn51/laggedOrderedLassoNetwork
.
Conclusions
We evaluated these approaches on simulated data for a repressilator, time-course data from past DREAM challenges, and a HeLa cell cycle dataset to show that they can produce accurate networks subject to the dynamics and assumptions of the time-lagged Ordered Lasso regression. | 
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
| ISSN: | 1471-2105 1471-2105  | 
| DOI: | 10.1186/s12859-018-2558-7 |