Covalent-supramolecular hybrid polymers as muscle-inspired anisotropic actuators

Skeletal muscle provides inspiration on how to achieve reversible, macroscopic, anisotropic motion in soft materials. Here we report on the bottom-up design of macroscopic tubes that exhibit anisotropic actuation driven by a thermal stimulus. The tube is built from a hydrogel in which extremely long...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 9; no. 1; pp. 2395 - 11
Main Authors Chin, Stacey M., Synatschke, Christopher V., Liu, Shuangping, Nap, Rikkert J., Sather, Nicholas A., Wang, Qifeng, Álvarez, Zaida, Edelbrock, Alexandra N., Fyrner, Timmy, Palmer, Liam C., Szleifer, Igal, Olvera de la Cruz, Monica, Stupp, Samuel I.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 19.06.2018
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2041-1723
2041-1723
DOI10.1038/s41467-018-04800-w

Cover

More Information
Summary:Skeletal muscle provides inspiration on how to achieve reversible, macroscopic, anisotropic motion in soft materials. Here we report on the bottom-up design of macroscopic tubes that exhibit anisotropic actuation driven by a thermal stimulus. The tube is built from a hydrogel in which extremely long supramolecular nanofibers are aligned using weak shear forces, followed by radial growth of thermoresponsive polymers from their surfaces. The hierarchically ordered tube exhibits reversible anisotropic actuation with changes in temperature, with much greater contraction perpendicular to the direction of nanofiber alignment. We identify two critical factors for the anisotropic actuation, macroscopic alignment of the supramolecular scaffold and its covalent bonding to polymer chains. Using finite element analysis and molecular calculations, we conclude polymer chain confinement and mechanical reinforcement by rigid supramolecular nanofibers are responsible for the anisotropic actuation. The work reported suggests strategies to create soft active matter with molecularly encoded capacity to perform complex tasks. Skeletal muscles are impressive as they can achieve reversible, macroscopic, anisotropic motion in soft materials. Here the authors show a bottom-up design of macroscopic hydrogel tubes containing supramolecular nanofibers that can undergo anisotropic actuation by thermal stimuli.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
SC0000989; AC02-06CH11357
USDOE Office of Science (SC), Basic Energy Sciences (BES)
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-018-04800-w