The Contribution of Social Behaviour to the Transmission of Influenza A in a Human Population
Variability in the risk of transmission for respiratory pathogens can result from several factors, including the intrinsic properties of the pathogen, the immune state of the host and the host's behaviour. It has been proposed that self-reported social mixing patterns can explain the behavioura...
Saved in:
Published in | PLoS pathogens Vol. 10; no. 6; p. e1004206 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
01.06.2014
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
ISSN | 1553-7374 1553-7366 1553-7374 |
DOI | 10.1371/journal.ppat.1004206 |
Cover
Summary: | Variability in the risk of transmission for respiratory pathogens can result from several factors, including the intrinsic properties of the pathogen, the immune state of the host and the host's behaviour. It has been proposed that self-reported social mixing patterns can explain the behavioural component of this variability, with simulated intervention studies based on these data used routinely to inform public health policy. However, in the absence of robust studies with biological endpoints for individuals, it is unclear how age and social behaviour contribute to infection risk. To examine how the structure and nature of social contacts influenced infection risk over the course of a single epidemic, we designed a flexible disease modelling framework: the population was divided into a series of increasingly detailed age and social contact classes, with the transmissibility of each age-contact class determined by the average contacts of that class. Fitting the models to serologically confirmed infection data from the 2009 Hong Kong influenza A/H1N1p pandemic, we found that an individual's risk of infection was influenced strongly by the average reported social mixing behaviour of their age group, rather than by their personal reported contacts. We also identified the resolution of social mixing that shaped transmission: epidemic dynamics were driven by intense contacts between children, a post-childhood drop in risky contacts and a subsequent rise in contacts for individuals aged 35-50. Our results demonstrate that self-reported social contact surveys can account for age-associated heterogeneity in the transmission of a respiratory pathogen in humans, and show robustly how these individual-level behaviours manifest themselves through assortative age groups. Our results suggest it is possible to profile the social structure of different populations and to use these aggregated data to predict their inherent transmission potential. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 BJC has received research funding from MedImmune Inc., and consult for Crucell NV. DAC has acted as a consultant to Medimmune. These do not alter our adherence to all PLOS policies on sharing data and materials. Conceived and designed the experiments: AJK SR BJC JMR JL DAC. Performed the experiments: AJK KOK VWIW. Analyzed the data: AJK SR KOK. Contributed reagents/materials/analysis tools: AJK SR KOK BJC JMR JL DAC. Wrote the paper: AJK. |
ISSN: | 1553-7374 1553-7366 1553-7374 |
DOI: | 10.1371/journal.ppat.1004206 |